Learning Aberrance Repressed Correlation Filters for Real-Time UAV Tracking 文章的代码,科研学习交流使用
2021-11-04 14:42:54 216.3MB visual tracking correlation filt
1
pent 估计Copula熵和传递熵 介绍 实现了估计参数熵和传递熵的非参数方法。 估计copula熵的方法由两个简单步骤组成:通过等级统计估计经验copula和使用k最近邻法估计copula熵。 Copula熵是用于多元统计独立性测量和测试的数学概念,并被证明等同于互信息。与Pearson相关系数不同,Copula熵是为非线性,高阶和多元情况定义的,这使其普遍适用。估计copula熵可以应用于很多情况,包括但不限于变量选择[2]和因果发现(通过估计传递熵)[3]。有关更多信息,请参阅Ma and Sun(2011) 。有关中文的更多信息,请点击。 用于估计传递熵的非参数方法包括两个步骤:估计三个copula熵和从估计的copula熵计算传递熵。还提供了条件独立性测试的功能。有关更多信息,请参阅Ma(2019) 。 功能 pent-估计copula熵; Construct_empir
1
重新讨论快速相关攻击-对Full Grain-128a,Grain-128和Grain v1进行密码分析
2021-10-23 11:10:03 734KB Fast correlation attack Stream
1
主要介绍了Python中的相关分析correlation analysis的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2021-10-22 19:14:22 60KB Python 相关分析 Python correlation
1
基于网络的入侵检测系统:基于网络入侵检测系统的最后一年项目
1
pent 用于估计Copula熵的R包 介绍 Copula熵是用于统计独立性度量的数学概念[1]。在双变量情况下,Copula熵被证明等同于互信息。与Pearson相关系数不同,Copula熵是为非线性,高阶和多元情况定义的,这使其普遍适用。 它具有广泛的应用,包括但不限于: 结构学习; 变量选择[2]; 因果发现(估计转移熵)[3]。 该算法包括两个步骤:使用秩统计量估计经验语料密度,以及使用kNN方法从估计的经验语料密度中估计语料熵。由于两个步骤都使用非参数方法,因此可以将copent算法应用于任何情况而无需进行假设。 在copent包的预印纸上的arXiv。有关更多信息,请参阅[1-3]。有关中文的更多信息,请点击。 功能 copent-主要功能; Construct_empirical_copula-算法的第一步,它通过秩统计来估计数据的经验copula; entknn-算法的
2021-10-19 14:58:00 7KB correlation entropy variable-selection copula
1
皮尔逊相关系数 皮尔逊相关性和每个vox相关性。
2021-10-14 23:08:58 4KB Python
1
互相关以及自相关算法的c++代码实现,包括原理说明,代码实现
相关分析(correlation analysis) 研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。 线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度; r>0,线性正相关;r<0,线性负相关; r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。 相关分析函数 DataFrame.corr() Series.corr(other) 函数说明: 如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度 如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度 返回值: DataFrame调用;返回D
2021-09-16 17:01:34 52KB al c io
1