为了提高利用深度神经网络预测单图像深度信息的精确度,提出了一种采用自监督卷积神经网络进行单图像深度估计的方法。首先,该方法通过在编解码结构中引入残差结构、密集连接结构和跳跃连接等方式改进了单图像深度估计卷积神经网络,改善了网络的学习效率和性能,加快了网络的收敛速度;其次,通过结合灰度相似性、视差平滑和左右视差匹配等损失度量设计了一种更有效的损失函数,有效地降低了图像光照因素影响,遏制了图像深度的不连续性,并能保证左右视差的一致性,从而提高深度估计的鲁棒性;最后,采用立体图像作为训练数据,无需标深度监督信息,实现了端到端的单幅图像深度估计。在 Tensorflow框架下,用KIT和 Cityscapes数据集进行实验结果表明,与目前的主流方法相比,该方法在预测深度的精确度方面有较大提升,拥有更好的深度预测性能。
2024-05-28 17:31:59 724KB
1
matlab基于CNN卷积神经网络猫狗猪动物识别系统,matlab基于CNN卷积神经网络猫狗猪动物识别系统,matlab基于CNN卷积神经网络猫狗猪动物识别系统
1
基于tensorflow框架(模型使用CNN)进行垃圾邮件分类(包含了中文垃圾邮件分类和英文垃圾邮件分类)
2024-05-24 20:30:14 1.71MB tensorflow tensorflow
1
基于pytorch + CNN的猫狗图像识别源码+全部数据(高分期末大作业).zip这是一个98分的期末大作业项目,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行! 基于pytorch + CNN的猫狗图像识别源码+全部数据(高分期末大作业).zip这是一个98分的期末大作业项目,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行!基于pytorch + CNN的猫狗图像识别源码+全部数据(高分期末大作业).zip这是一个98分的期末大作业项目,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行!基于pytorch + CNN的猫狗图像识别源码+全部数据(高分期末大作业).zip这是一个98分的期末大作业项目,主要针对计算机相关专业的正在做课程设计
2024-05-20 21:25:38 371.33MB pytorch 图像识别 人工智能
本文来自于腾讯云,全文阐述了卷积神经网络的基本结构和原理,希望对您的学习有帮助。先明确一点就是,DeepLearning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deeplearning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,DeepLearning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等
2024-05-20 16:11:54 280KB
1
共有两个数据集和一个源码文件(有问题可联系博主) 基于随机森林和XGBoost的肥胖风险多类别预测系统是一个利用机器学习算法对个体肥胖风险进行精准分类的先进工具。在现代社会,肥胖已成为影响人类健康的重要因素之一,与多种慢性疾病密切相关。因此,开发一个能够准确预测肥胖风险的模型具有重要的现实意义。 该系统采用随机森林和XGBoost两种集成学习算法,通过整合多个决策树或弱学习器的预测结果,实现了对肥胖风险的多类别预测。随机森林通过随机抽样和特征选择构建多棵决策树,利用多数投票原则得出最终预测结果;而XGBoost则通过梯度提升算法优化目标函数,不断迭代生成新的弱学习器,并将它们的预测结果加权求和,得到最终的预测值。 数据集方面,系统采用了包含多个特征(如年龄、性别、身高、体重、生活方式等)和肥胖风险类别标签的数据集。通过对这些数据进行预处理和特征工程,系统能够提取出与肥胖风险密切相关的关键信息,为模型训练提供有力的数据支持。 在源码实现方面,系统采用了Python编程语言,并借助了scikit-learn和xgboost等机器学习库。
2024-05-13 16:15:19 2.08MB 随机森林 数据集
1
本文深入探讨了如何利用深度学习技术对Python程序进行预测。我们将重点介绍CNN-GRU-Attention模型,这是一种结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制的先进模型。文章将从模型的理论基础出发,逐步引导读者理解其工作原理,并提供实际的代码示例,展示如何在Python中实现这一模型。内容适合对深度学习和自然语言处理有一定了解的开发者,以及对使用机器学习技术进行代码预测感兴趣的研究人员。 适用人群: - 机器学习工程师 - 数据科学家 - Python开发者 - 自然语言处理研究人员 使用场景: - 代码自动补全和预测 - 程序错误检测和调试 - 软件开发中的智能辅助工具 关键词 深度学习
2024-05-03 16:50:27 1.37MB python
1
CNN-LSTM组合预测模型,输入数据是多列输入,单列输出的回归预测模型,代码内部有基本注释,替换数据就可以使用,版本需求是2020及以上
2024-05-01 17:54:24 1.77MB lstm
1
基于CNN的中文文本分类算法(可应用于垃圾邮件过滤、情感分析等场景)
2024-04-14 09:54:07 13.33MB
1
基于CNN的二分类识别,采用的是python+tensorflow框架,识别准确率和验证准确率均90%以上,非常好用。
2024-04-13 18:41:39 301.16MB tensorflow tensorflow
1