提出了一种新型的双有源桥(Dual Active Bridge,DAB)LCC谐振双向DC-DC变换器,将LCC谐振槽应用到传统的DAB双向DC-DC变换器中。分析了正向传输功率时,该变换器具有的变压器原边开关管零电压开关(zero voltage switching,ZVS)和副边整流二极管零电流开关(zero current switching,ZCS)的优点,同时,还分析了反向功率传输时的buck工作模式。仿真和实验结果证明:该变换器可以实现功率双向传输并实现开关管的ZVS和ZCS开关。
2021-10-11 12:13:19 259KB 双向DC-DC变换器 LCC谐振 ZVS ZCS
1
移相全桥转换器移相PWM信号的产生方式主要有模拟电路控制和数字控制两种。首先分析了数字控制与模拟控制相比对系统整体性能所具有的优点,然后简要介绍了移相全桥DC/DC转换器PWM信号所具有的特点,并提出了以XMC4500为基础的数字控制方案的硬件设计和双闭环控制流程,最后详细介绍了数字控制的具体实现过程,并通过样机试验,证明了数字化控制的可行性。
2021-08-29 10:01:27 188KB 移相全桥
1
DSP纯数字PFC+ZVS移相全桥48V50A输出开关电源原理图,之前在淘宝上花钱购买的PDF资料,主要是为了做48V50A电源参考所用的, 资料是艾默生的电源模块资料,大家可以进行参考使用。
2021-08-29 09:57:38 376KB 开关电源 全桥 电路方案
1
ZVS即所谓零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到80%~85%。接下来将详解介绍zvs原理及如何自制zvs的升压电路图以及它的操作步骤。 ZVS经典原理: 1. 上电瞬间,电源电压流经R1,R2,经过ZD1,ZD2稳压二极管钳位在12V后分别送入MOS1,MOS2的GS极,因此两个MOS管同时开通。 2. 因为元件参数的离散性(例如:MOS管GS钳位电压的离散性、MOS管本身跨导参数的离散性、变压器初级绕组不严格对称、走线长度差异等),导致两管DS电流在上电瞬间就不相同。假设下方的MOS管MOS2流过的电流稍大。即IL3》IL2。因为L2,L3是在同一磁芯上绕制,本身存在磁耦合,所以,对磁芯的励磁电流为IL2,IL3之和。之前提到IL3》IL2,而且从抽头看去,IL2,IL3的电流方向相反,所以对磁芯的励磁电流为Ip1=IL3-IL2。这样就可以等效为仅有L3线圈产生励磁作用(有一部分抵消掉L2的励磁)。明白这点以后,继续往下分析。 3. 见图1,在上电瞬间,L2,L3中的等效励磁电流Ip1用红色线条表示,因为具有相同的磁路,Ip1将在L2上产生一个互感电流,图中用蓝色线条表示,L2 L3与C1构成并联谐振,这个互感电流的方向同IL2相反,如此正反馈造成的结果是IL2越来越小,最终可单纯看做只有L3参与励磁。 4. 与此同时,B点电压升高,D1截止,C点电压保持12V,MOS2继续保持开通。因为MOS2开通时VDS很小,A点近似接地,D2导通,将D点电位强行拉低至0.7V左右,MOS1失去VGS而截止。 5. 随着时间推移,L3对磁芯的励磁最终达到磁饱和,大家注意,此时蓝色线条的电流因磁芯饱和失去互感刚好减到0,MOS1的DS上电压为零。而L3失去电感量而近似于一个仅几mΩ的纯电阻,瞬间大电流全部叠加在MOS2的导通电阻Ron上,使A点电位瞬间升高,D2截止,D点电位恢复至12V,MOS1获得VGS而导通(在VDS=0的情况下导通,故称ZVS)。继而B点近似接地,C点电压降到0.7V,MOS2截止,MOS1保持导通。当L2励磁达到饱和时电路状态再次发生翻转,重复第4过程。 6. 整个过程中,翻转的时间由谐振电容C1的容量和L2 L3共同决定,因为有C1构成谐振,初级电压波形呈完美正弦波,谐波分量大大减小,漏感的影响不复存在,因此变比等于匝比。L1为扼流电感,利用电感电流的不可突变特性,保证磁饱和瞬间MOS管的DS极不会流过巨大浪涌而损坏。这也是为什么不接此电感或者感量太小时,电路空载电流会增大,而且MOS管发热严重的原因。 因为利用了磁饱和原理,所以在磁芯工作在滞回线1,3象限的饱和临界点之间,磁芯的储能作用得以最大发挥,传递功率相当大。
2021-08-12 09:26:06 61KB 模拟/电源
1
什么是ZVS? ZVS是什么,度娘查的为”零电压开关(Zero Voltage Switch)“。即开关管关断时,开关管导通时,其两端的电压已经为0。这样开关管的开关损耗可以降到最低。我们平时使用的电磁炉和LLC电源都是这种谐振电源,普通的充电器等都是硬开关的,比这种谐振电源损耗要大些。所以ZVS可以做到很高效率,但是有一个缺点,就是其调节范围一般都比较窄。例如电磁炉,当我们把功率调到比较大时,为持续加热;当功率调的较小时,就开始断断续续加热,因为那个时候已经不能达到谐振状态了。像我们普通充电器那种硬开关的电源,不管空载和满载都是持续震荡的。 ZVS逆变器电路原理图截图: ZVS逆变器电路PCB截图:
1
利用双三极管产生方波输出,并用图腾电路放大后驱动场效应管升压 multisim 11文件。
2021-07-11 16:31:36 137KB ZVS 方波 场效应管 升压
1
以UCC2895作为PWM芯片,详细分析全桥ZVS的工作原理
2021-06-23 10:13:00 1.05MB 2895 全桥 ZVS 工作原理
1
ZVS移相全桥控制器UCC3895及其应用pdf,
2021-05-17 19:35:51 979KB 开关电源
1
借助Buck准谐振变换器(ZVS-Buck-QRC)的工作原理,仿真验证了ZVS效果,需要指出指电路开关器件需承受很高电压应力的缺点
2021-04-30 20:13:18 22KB ZVS buck电路 波形分析
1
PISM建立的零电压软开关,主要是仿真作业,可以实现电压电流等等的仿真,对于初学者很有帮助
2019-12-21 20:11:25 11KB PISM ZVS 仿真 电力电子软开关
1