2022-12-28 16:49:07 1.97MB GBDT xgboost
1
包含比赛代码、数据、训练后的神经网络模型等。 在分析光伏发电原理的基础上,论证了辐照度、光伏板工作温度等影响光伏输出功率的因素,通过实时监测的光伏板运行状态参数和气象参数建立预测模型,预估光伏电站瞬时发电量,根据光伏电站DCS系统提供的实际发电量数据进行对比分析,验证模型的实际应用价值。 1 数据探索与数据预处理 1.1 赛题回顾 1.2 数据探索性分析与异常值处理 1.3 相关性分析 2 特征工程 2.1 光伏发电领域特征 2.2 高阶环境特征 3 模型构建与调试 3.1 预测模型整体结构 3.2 基于LightGBM与XGBoost的构建与调试 3.3 基于LSTM的模型构建与调试 3.4 模型融合与总结 4 总结与展望 参考文献
2022-12-25 13:28:50 1.88MB 光伏发电 XGBoost LightGBM LSTM
1
内含数据集以及算法的源码,适合算法工程师在本领域的练手项目
2022-12-14 16:27:02 256KB 深度学习 机器学习 项目
内含数据集以及算法源码适合初学者和进阶者
2022-12-14 16:27:01 6KB 深度学习 机器学习
内含脱敏体检数据,以及算法源码。
2022-12-14 12:26:11 15KB 体检数据 高血压 糖尿病
基于xgboost的用户行为分析UBA,内含原理说明以及训练验证脚本,以及数据集
2022-12-13 15:00:30 473KB 用户行为分析uba xgboost 机器学习
针对智能电网调度控制系统(D5000系统)健康度评价,基于专家经验的传统评价方法存在主观性较大的问题,机器学习多分类方法是提高评价客观性的一种有效手段,但健康度各等级样本数目间存在的不平衡问题导致分类准确率较低,为此提出一种基于随机平衡和极端梯度提升(RB-XGBoost)算法的D5000系统健康度评价模型。首先,针对系统各评价等级样本数目严重不平衡的问题,提出一种自适应随机平衡(RB)的混合采样方法,分别以等级间样本数目的最大值、最小值作为采样区间的上、下限,生成多个随机数对各等级样本数据进行欠采样或过采样,增加训练数据的多样性并降低其不平衡程度;然后,训练平衡后的样本数据,建立极端梯度提升(XGBoost)算法子模型,考虑到各子模型重要度的一致性,提出采用硬投票方式集成所有子模型,得到与D5000系统各子模块对应的评价模型;最后,根据该系统指标层级关系,在评价过程中采用并、串行结合的计算方式,构建包含17个RB-XGBoost模型的D5000系统整体健康度评价模型。8组KEEL数据库中多类不平衡数据集的实验结果表明,与现有同类典型方法相比,所提方法的平均分类准确率最高提升了6.79
1
基于SSA-XGBOOST麻雀算法优化XGBOOST的数据分类预测(Matlab完整程序和数据) 基于SSA-XGBOOST麻雀算法优化XGBOOST的数据分类预测(Matlab完整程序和数据) 基于SSA-XGBOOST麻雀算法优化XGBOOST的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。
Matlab实现SSA-XGBOOST麻雀算法优化XGBOOST的多特征分类预测(完整源码和数据) 数据为多特征分类预测,输入12个特征,输出四个类别。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
基于麻雀算法优化xgboost的数据回归预测(SSA-XGboost)(Matlab完整程序和数据) 运行版本为2018及以上 优化参数为迭代次数、最大深度和学习率 利用交叉验证抑制过拟合问题
2022-11-27 18:26:37 53.95MB 麻雀算法 数据回归预测 SSA-XGboost SSA