Scikit学习 Scikit-learn:是用于Python编程语言的免费软件机器学习库。 它具有各种分类,回归和聚类算法,包括支持向量机,随机森林,梯度提升,k均值和DBSCAN,并且旨在与Python数值和科学库NumPy和SciPy互操作。 机器学习中任何项目的步骤: 数据文件并附加数据 数据清理,并从功能之间的关联中学习。 功能选择 数据缩放 数据分割 选择最佳算法(回归分类-SVM-KMeans-KNN .....)。
2023-01-09 13:48:09 8.98MB JupyterNotebook
1
包括了房屋的经度、房屋的纬度、房龄、房间个数、卧室个数、街区内人口、街区内家庭总数、收入、房屋价值,和sklearn中的california数据集相同,可直接通过pandas.read_csv读取即可,适合sklearn无法正常加载的情况下使用,其中加载代码如下 ```python from sklearn.datasets.california_housing import fetch_california_housing housing = fetch_california_housing() ```
2023-01-04 15:28:17 1.98MB 数据集 sklearn
决策树莺尾花 python iris 分类模型 机器学习入门项目 实验 sklearn自带的鸢尾花数据集
2023-01-01 15:26:44 658B 机器学习
1
lstm tensorflow 使用 LSTM 模型来对泰坦尼克号数据集进行预测 使用 Keras 深度学习框架 通过使用 scikit-learn 的 load_titanic 函数来完成
2023-01-01 15:26:43 1KB LSTM
1
如果本地上传失败一般应该是数据集不全,下载本数据源可以解决 from sklearn.datasets import fetch_lfw_people faces = fetch_lfw_people() 执行上面的第二行程序,python会从网上下载labeled_face_wild people数据集,这个数据集大概200M,因为墙的原因下载很慢失败。 下载解压,指定data_home路径:D:\pythonwork\Data\SVM\scikit_learn_data\lfw_home(我的路径)即可。
2022-12-29 11:28:11 247.13MB 机器学习 人脸识别 svm
1
sklearn安装 解压放在自己xx:\xx\Anaconda3\Lib\site-packages中即可
2022-12-26 19:31:14 5.6MB python
1
ner_crf ner_crf是Jupyter笔记本,它使用 / 实现,使用条件随机字段(CRF)描述了命名实体识别(NER)。 依存关系 ner_crf用编写,因此在使用python3之前应下载最新版本的python3 。 可以从找到python的下载(建议使用3.5.1版)。 您还需要能够运行Jupyter Notebook(请参阅 )。 还需要以下python库来运行ner_crf笔记本:
2022-12-12 20:26:51 961KB python nlp machine-learning crf
1
4.机器学习项目 我已经使用sklearn库实现了一些机器学习项目。
2022-12-03 19:49:27 674KB JupyterNotebook
1
为什么选择sklearn? Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regression 回归 Clustering 非监督分类 Dimensionality reduction 数据降维 Model Selection 模型选择 Preprocessing 数据预处理 我们总能够从这些方法中挑选出一个适合于自己问题的, 然后解决自己的问题。 END 如何安装sklearn? pip 安装 安装 Scikit-learn (sklearn) 最简单的方法就是使用 pip 安装它. 首先确认自己电脑中有安装 Python (>=2.6 或 >=3.3 版本) Numpy (>=1.6.1) Scipy (>=0.9) 2 然后找到你的 Terminal (MacOS or Linux), 或者 CMD (Windows). 输入以下语句: 如何安装Sklearn 3 Windows 注意事项 : 如果你是
2022-11-22 09:25:00 982B sklearn安装
1
核主成分分析法,使用python实现。应对非线性数据,先使用核技巧映射高维使之线性可分,之后再用PCA方法将高维降到低维,理论上可从无穷维降到一维或二维,将数据变为线性可分。此程序中既包含了手工制作的KPCA全过程,也有直接从sklearn调用包直接实现。里面有详细的代码注释,核分块注释,可以截取自己需要的部分。直接套用的话,使用最前面一段代码替换数据即可
1