时间序列(time series)是一组按照时间发生先后顺序进行排列的离散序列,是日常生活中最常见的数据形式之一。对时间序列的分析是既是统计学中的重要问题,也是人工智能、数据挖掘的一个重要应用方向。 本课程面向人工智能学院的本科生和研究生,重点关注统计学中分析时间序列的基本思路、模型以及方法。同时强调使用人工智能技术对时序数据这一种特殊的数据类型进行分析,也关注使用“时间序列分析”中的思路看待和解决人工智能领域的实际问题。 课程内容将从时间序列的发展历程、平稳性、经典分析模型等概念先后推进。课程中也会介绍人工智能的相关技术,如使用循环神经网络进行时间序列的建模,或使用时间序列中的自回归、指数平均思想建模机器学习、计算机视觉的重要问题。
2023-04-09 15:11:05 24.97MB 时间序列
1
科研必备数学工具书 Table Of Integrals, Series And Products 第七版
2023-03-31 14:49:18 7.32MB Table Integrals Series
1
贝叶斯先知 先知温度模型的贝叶斯优化,具有每日和每年的季节性以及额外的回归系数 如果您喜欢BayesianProphet,请给它加星号,或拨叉并作出贡献! 先知分解显示了趋势以及英国剑桥温度观测的年度和每日季节性: 安装/使用 必需的: 最新版本的 包 程序包 包 要安装python软件包: pip install -r requirements.txt 安装以上依赖项后, 克隆存储库并在Jupyter的本地安装中打开笔记本,或 远程尝试笔记本 -可编辑 -可编辑 在上 在查看 细节 有关数据(包括清洁),基线模型,每日和每年的季节性描述以及R先知模型的详细说明,请参阅我的时间序列和R资料库中有关Cambridge UK温度预测的其他模型。 假设和限制已包含在上述存储库中,此处不再赘述。 我的剑桥大学计算机实验室气象站R Shiny存储库中提供了其他探索性数据分析。 我的主
2023-03-29 20:41:56 3.39MB python time-series jupyter temperature
1
GKT 本文。 GKT的体系结构如下: 设置 要运行此代码,您需要以下内容: 配备GPU的机器 python3 numpy,pandas,scipy,scikit-learn和火炬程序包: pip3 install numpy==1.17.4 pandas==1.1.2 scipy==1.5.2 scikit-learn==0.23.2 torch==1.4.0 请注意,不要使用0.23.4版本的熊猫,因为在processing.py文件中执行以下命令时,它将导致错误。 df.groupby('user_id', axis=0).apply(get_data) 如果您使用“ assistment_test15.csv”文件进行测试,则在pandas 0.23.4版本中,经过groupby用户后,它将返回16名学生。 但是,如果您在1.x版本中使用熊猫,它将返回15名学生。 (此
1
FANUC Robot series R-30iB_Mate_Plus 控制装置 操作说明书_报警代码列表
2023-03-18 09:40:48 3.53MB FANUC 报警代码 R-30IB
1
时间序列分析预测小工具。自回归模型分析,卡尔曼滤波自回归模型,AIC, BIC, FPE, MDL, SBC, CAT, PHI自回归模型检验。The TSA toolbox is useful for analysing Time Series. - Stochastic Signal processing - Autoregressive Model Identification - adaptive autoregressive modelling using Kalman filtering - multivariate autoregressive modelling - maximum entropy spectral estimation - matched (inverse) filter design - Histogram analysis - Calcution of the entropy of a time series - Non-linear analysis (3rd order statistics) - Test for UnitCircle- and Hurwitz- Polynomials - multiple signal processing - Several criteria (AIC, BIC, FPE, MDL, SBC, CAT, PHI) for model order selection an autoregressive model are included. - Fast algorithms are used - missing values (encoded as NaN's) are considered
2023-02-27 14:57:20 101KB Time Series Anal matab
1
这是英国公开大学的数学课件,是讲述傅立叶系数的.
2023-02-22 13:21:56 774KB 课件;傅立叶序列(Fourier series)
1
关于惠普彩激升级后无法识别硒鼓的处理方案:升级了20201021固件会导致非原装硒鼓提示耗材有问题无法打印; 下载本20200612版本的打印机固件,降级后使用。内附说明
2023-02-16 20:43:34 32.54MB 云打印
1
ALGOLTEK AG9321MCQ系列为HDMI和VGA转换器提供USB C型(显示端口备用)的单片机解决方案,并提供电源传输。AG9321MCQ系列支持带片上Rp/Rd的双USB C型插座 符合USB电源传输规范3.0。集成的10位ADC具有USB PD 3.0的快速角色交换(FRS)功能和过电压保护。AG9321MCQ还支持快速充电™3.0电池充电。 AG9321MCQ系列为独立立体声提供I2S接口和音频DAC。
1
【论文解读】High-Dimensional Vector Autoregressive Time Series Modeling via Tensor Decomposition. 【基本信息】上海交通大学数学科学学院王迪副教授在JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION(SCI一区)发表的文章。 【摘要】经典向量自回归模型是多元时间序列分析的基本工具。然而,当时间序列和滞后阶数甚至相当大时,它涉及太多参数。本文建议将模型的转换矩阵重新排列为张量形式,以便通过张量分解可以同时沿三个方向限制参数空间。 相比之下,降秩回归方法只能在一个方向上限制参数空间。 除了实现大幅度的降维,所提出的模型还可以从因子建模的角度进行解释。此外,为了处理高维时间序列,本文考虑在因子矩阵上施加稀疏性,以提高模型的可解释性和估计效率,从而产生了稀疏性诱导估计器。对于低维情况,我们导出了所提出的最小二乘估计的渐近性质,并引入了交替最小二乘算法。对于高维情况,我们建立了稀疏性诱导估计器的非渐进性质,并提出了一种用于正则化估计的ADMM算法。
2023-01-12 17:55:44 5.72MB 论文解读
1