pytorch实现Sequence to Sequence Learning论文结构,seq2seq
2022-02-25 18:41:08 7KB seq2seq pytorch
1
基于Attention机制的seq2seq模型的代码实现,用于对联生成
2022-02-25 18:39:24 19MB seq2seq attention
1
本案例取自PyTorch官网的NLP FROM SCRATCH: TRANSLATION WITH A SEQUENCE TO SEQUENCE NETWORK AND ATTENTION,完整的讲解见文章:https://blog.csdn.net/weixin_45707277/article/details/122409447
2022-01-17 17:05:56 33.25MB NLP Pytorch
1
RNN+Attention实现Seq2Seq中英文机器翻译
2021-12-27 19:08:29 256.6MB nlp RNN 机器翻译 attention
1
matlab代码左移神经机器翻译(seq2seq)教程 作者:Thang Luong,Eugene Brevdo,赵瑞(,) 此版本的教程要求。 要使用稳定的TensorFlow版本,请考虑其他分支,例如。 如果您使用此代码库进行研究,请引用。 介绍 序列到序列(seq2seq)模型(,)在各种任务(例如机器翻译,语音识别和文本摘要)中都取得了巨大的成功。 本教程为读者提供了对seq2seq模型的全面理解,并展示了如何从头开始构建具有竞争力的seq2seq模型。 我们专注于神经机器翻译(NMT)的任务,这是带有wild的seq2seq模型的第一个测试平台。 所包含的代码轻巧,高质量,可立即投入生产,并结合了最新的研究思路。 我们通过以下方式实现这一目标: 使用最新的解码器/注意包装器,TensorFlow 1.2数据迭代器 结合我们在构建递归模型和seq2seq模型方面的专业知识 提供有关构建最佳NMT模型和复制的提示和技巧。 我们认为,提供人们可以轻松复制的基准非常重要。 结果,我们提供了完整的实验结果,并在以下公开可用的数据集上对我们的模型进行了预训练: 小型:由ET提供的TED演
2021-12-19 22:53:24 827KB 系统开源
1
自然语言处理方向机器翻译的经典论文之一。
2021-12-12 18:56:59 340KB 序列到序列 seq2seq
1
从单文档中生成简短精炼的摘要文本可有效缓解信息爆炸给人们带来的阅读压力。近年来,序列到序列(sequence-to-sequence,Seq2Seq)模型在各文本生成任务中广泛应用,其中结合注意力机制的Seq2Seq模型已成为生成式文本摘要的基本框架。为生成能体现摘要的特定写作风格特征的摘要,在基于注意力和覆盖率机制的Seq2Seq模型基础上,在解码阶段利用变分自编码器(variational auto-encoder,VAE)刻画摘要风格特征并用于指导摘要文本生成;最后,利用指针生成网络来缓解模型中可能出现的未登录词问题。基于新浪微博LCSTS数据集的实验结果表明,该方法能有效刻画摘要风格特征、缓解未登录词及重复生成问题,使得生成的摘要准确性高于基准模型。
2021-12-12 10:35:17 1.16MB 文本摘要 变分自编码器 Seq2Seq模型
1
使用代码更改检测简单的愚蠢错误(SStuB),并使用seq2seq模型进行修复 一些代码可与,该是对一个线性Java错误的简单修复的集合。 资料库描述 utils : 该软件包包含一些实用程序模块,用于修复和准备数据。 data_reader.py :加载json数据集并将SStuB属性放入Bug类。 它定义了一些有用的功能,例如生成要在其他模块中使用的GitHub URL。 关于数据集和其他资产的路径,还有一些配置变量: DATASET_ROOT = '../data' SRC_FILES = DATASET_ROOT / 'src_files' sstubs = DATASET_ROOT / 'sstubs.json' bugs = DATASET_ROOT / 'bugs.json' sstubs_large = DATASET_ROOT / 'sstubsLarge.json
2021-12-07 11:46:21 16.97MB program-repair bug-detection Python
1
Pytorch-Tutorial_Seq2Seq_Attention
2021-11-28 15:45:40 2.78MB Python
1
MultiWOZ 多域绿野仙踪数据集(MultiWOZ),是跨多个领域和主题的全人类书面对话的完整标签集合。 对话的大小为1万个,比以前所有带注释的面向任务的语料库大至少一个数量级。 感谢在上提供了最新的,经过纠正的数据集版本。 可在上获得新的,更正后的数据集版本。 可在以下访问EMNLP出版物中使用的数据集: 可在以下位置访问ACL发布中使用的数据集: 数据结构 如果该域允许,则包含3406个单域对话(包括预订),以及包含至少2个(最多5个域)的7,032个多域对话。 为了增强结果的可重复性,将语料库随机分为训练,测试和开发集。 测试和开发集各包含1k个示例。 即使所有对话都是连贯的,但其中一些对话并未按照任务描述来完成。 因此,验证和测试集仅包含完全成功的对话,因此可以对模型进行公平的比较。 在验证和测试集中没有来自医院和警察领域的对话。 每个对话都包含一个目标,多个用
1