基于递归神经网络的自动编码器 PyTorch实现, 目录: 项目结构: 项目结构基于以下 ├── agents | └── rnn_autoencoder.py # the main training agent for the recurrent NN-based AE ├── graphs | └── models | | └── recurrent_autoencoder.py # recurrent NN-based AE model definition | └── losses | | └── MAELoss.py # contains the Mean Absolute Error (MAE) loss | | └── MSELoss.py # contains the Mean Squared Error (MSE) loss ├── datasets
2021-12-10 15:59:37 146KB Python
1
Coursera上的深度学习专业化(由deeplearning.ai提供) deeplearning.ai提供的Coursera所有课程的编程作业和测验。 授课老师: 笔记 有关Coursera深度学习专业中所有课程的详细面试准备笔记,请 设置 运行setup.sh以(i)下载经过预先​​训练的VGG-19数据集,并(ii)提取所有分配所需的经过z​​ip压缩的经过预先训练的模型和数据集。 学分 此仓库包含我针对该专业的工作。除非另有说明,否则代码库,测验问题和图表均取自的“ 。 编程作业 课程1:神经网络与深度学习 课程2:改善深度神经网络:超参数调整,正则化和优化 课程3:构建机器学习项目 此课程没有PA。但是本课程附带了非常有趣的案例研究测验(如下)。 课程4:卷积神经网络 课程5:序列模型 测验解决方案 课程1:神经网络与深度学习 第1周测验-深度学习简介: | 第2周测验-神经
1
递归神经网络模型用于纠错 该存储库提供了在描述的各种模型的源代码。 该项目旨在实现和评估神经网络模型,特别是递归神经网络(RNN),双向递归神经网络(BRNN),序列到序列(seq-to-seq)模型以及最终基于注意力的机制。序列到序列模型。 下图说明了预测给定不正确短语的正确形式的编码器-解码器模型。 DyNet库 在当前项目的实施中,我们一直在使用DyNet。 动态神经网络工具包或DyNet是一个神经网络库,适用于具有动态结构的网络。 DyNet支持在神经网络计算中使用的静态和动态声明策略。 在动态声明中,每个网络都是通过使用有向和无环计算图构建的,该图由定义模型的表达式和参数组成。 DyNet在CPU或GPU上有效工作,最近为许多NLP研究论文和项目提供了支持。 您可以找到有关DyNet的更多信息。 资料集 我们的方法与语言无关。 专门针对我们的项目,我们使用对模型进行了训练和评估,
1
DeepAR:自回归递归网络的概率预测 描述 这是的实现。 这是什么实现不包含 尽管实现起来很微不足道,但是目前遗漏了两个重要的部分。 用于项目分类的联合嵌入学习 对高斯分布的支持,适用于预测实际价值时间序列。 如果您决定实施高斯分布,请注意重新分配分布参数。 请参阅本文。 结果 由于该论文没有提供定量结果,因此我们使用了Amazon Sagemaker上的carparts数据集进行了测试。 所有预处理和训练/有效拆分均完全按照本文中所述进行。 SageMaker的输出(单个时期) [07/01/2018 14:22:34 INFO 139862447138624] #test_score (algo-1, wQuantileLoss[0.5]): 1.12679 [07/01/2018 14:22:34 INFO 139862447138624] #test_score (algo
1
图像的均方误差的matlab代码经常注意模型 介绍 在过去的十年中,神经网络和深度学习在从计算机视觉到自然语言处理的各种应用中得到了快速发展。 随着计算的巨大改进,人们可以训练庞大而深入的神经网络来完成某些特定任务,例如Imagenet中的图像分类,通过RNN进行图像字幕,语义分割,对象检测,文本生成等。 现在,存在许多不同的神经网络功能。 但是,传统的CNN或多或少都面临着相同的问题:计算复杂性,可伸缩性,鲁棒性。 同时,神经网络也被引入到强化学习中,并在游戏中产生了巨大的成功。 里程碑是和。 这些成就使研究人员考虑了将强化学习算法与CNN结合以实现“注意力”机制的可能性。 这是循环注意力模型的动机,它是CNN,RNN和REINFORCE算法的混合体。 原始的创作论文为,在MNIST数据集中表现出色。 该模型可以大大减少计算量,并忽略图像中的混乱情况。 我花了很多时间和精力研究并在张量流中补充了该模型。 这就是该存储库的用途。 模型 本文的模型如下: 图例: 瞥见传感器:给定输入图像,瞥见位置和标度号以提取视网膜表示。 瞥见网络:两个完全连接的层,可在给定输入图像和瞥见位置的情况下输
2021-11-09 20:08:26 24.2MB 系统开源
1
matlab马科维茨代码投资组合资产分配策略:从Markowitz到RNN 该研究项目将从18个欧盟债券指数和一个基准开始,探索用于优化投资组合分配的不同方法。 使用Matlab和Python开发的项目。 项目中使用的输入数据和技术 原始数据是从Eikon下载的1998年至2018年间18个欧盟国家的所有回报,所有到期债券指数价格。 汇率也下载了。 使用的技术包括:Markowitz框架中的权重预算,风险预算,恒定相关模型和递归神经网络。 项目结构 包含从原始.xlsx文件提取数据的代码 进行初步的数据探索和分析 在5年的两个不同时期内对不受约束和受约束的有效边界进行一些初步分析 复制了5年内同等权重和基准投资组合的可能演变 a003_...m和a004_...m文件探索了用于投资组合分配的不同高级技术,计算了资产权重随时间的变化,累积收益和各种策略的总体排名 文件夹/RNN包含与a004_a_Advanced.m使用的递归神经网络相关的python文件 有关使用项目文件的其他信息 大多数Matlab a00x_...m文件应独立存在,并使用.mat文件收集执行相应文件中包含的分析所需
2021-10-15 19:41:15 7.45MB 系统开源
1
带火炬的递归神经网络 有几种模型,例如RNN,LSTM,GRU和双向LSTM / GRU。 我的一个项目与使用LSTM,GRU等从每日天气温度预测数据获得的时间序列数据有关。 数据集下载链接 减少上传文件的容量。 这是所需数据集的下载链接:
2021-10-14 20:32:26 6.33MB JupyterNotebook
1
描述 根据论文,我有Keras的开放源代码XinLi,LidongBing,WaiLam and BeiShi. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction layer_definition 这部分包括编写自己的图层。 双重注意 这部分包括数据的预处理,模型的构建和模型的训练。 数据 从( )下载
2021-10-12 11:50:26 6.37MB Python
1
循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。
2021-10-10 13:49:59 1.14MB RNN
1
启用可审计自主性的神经回路政策 神经回路策略(NCPs)是基于LTC神经元和突触模型设计的稀疏循环神经网络,受到神经的神经系统的启发。 本页描述了NCP的Keras(TensorFlow 2.0软件包)参考实现。 有关论文的再现性材料,请参见。 安装 要求: Python 3.6 TensorFlow 2.0 (可选)PyTorch 1.7 pip install keras-ncp 2021年1月更新:添加了实验性PyTorch支持 随着keras-ncp 2.0版,添加了实验性PyTorch支持。 下面的文件夹和一个Colab笔记本中有一个有关如何使用PyTorch绑定的。 请注意,
2021-10-03 22:54:23 5.05MB tensorflow keras ncp recurrent-neural-network
1