基于栅格法构建地图的Q-Learning路径规划python代码
2024-05-23 15:30:40 34KB python 强化学习 路径规划
1
svm支持向量机python代码 机器学习语义分割-随机森林,支持向量机,GBC Machine learning semantic segmentation - Random Forest, SVM, GBC.zip
2024-05-21 18:39:18 4.69MB 机器学习 随机森林 支持向量机
1
Phishing_Website_Detection:该项目基于使用随机森林分类公式检测网络钓鱼欺诈性网站。 使用Python编程语言和Django框架实现
2024-05-20 11:25:47 53KB python security data-science machine-learning
1
通过深度学习在光谱学中检索气体浓度 田林波,孙佳晨,张军,夏金宝,张志峰,Alexandre A. Kolomenskii,汉斯·舒斯勒,张ler 该存储库提供补充材料,包括: 代码 load data.py-将数据从xlxs文件加载到pkl。 I / O例程 模型Implementation.py-在Keras中实现的深度神经网络(1D-CNN&DMLP)。 Pre-training.py-预训练模型的说明 transfer-learning.py-为预训练的模型实施转移学习的说明。 数据集 目前,我们尚未决定如何提升大容量数据集的水平。与编辑协商后将确认。
2024-05-06 12:07:36 427KB Python
1
聚合视图对象检测 此存储库包含用于3D对象检测的聚合视图对象检测(AVOD)网络的Python实现的公共版本。 ( ,( ,,( ,( 如果您使用此代码,请引用我们的论文: @article{ku2018joint, title={Joint 3D Proposal Generation and Object Detection from View Aggregation}, author={Ku, Jason and Mozifian, Melissa and Lee, Jungwook and Harakeh, Ali and Waslander, Steven}
2024-05-05 15:54:37 24.01MB deep-learning object-detection
1
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
2024-05-04 00:04:03 15.27MB 贝叶斯
1
作者: Christopher M. Bishop, Hugh Bishop 书名: Deep Learning: Foundations and Concepts 发布时间: 2023 关键词: 深度学习, 人工智能
2024-04-28 15:50:19 43.68MB 人工智能
1
柠檬汽水 用于电子病历(EHR)数据的开源深度学习库。 在此库的初始发行版中.. 它基于流行论文实现了2种深度学习模型(LSTM和CNN) 使用合成的EHR数据,该数据是使用开源的 预测最重要的4种 最终目标是 继续添加更多的模型实现 不断添加其他公开可用的数据集 并设有排行榜,以跟踪哪些模型和配置在这些数据集上最有效 安装 可安装的lib即将推出 如何使用 现在,git克隆仓库并运行笔记本.. 仔细阅读以下Quick Start guides以了解基本信息 Quick Walkthrough Running Experiments 设置合成器并生成您喜欢的数据集 进行实验 路线图 排行榜,用于跟踪哪些模型和配置在不同的公开可用数据集上效果最佳。 回调,混合精度等 升级库以使用fastai v2。 或者至少,为fastai风格的回调和构建功能。 更多型号 从中挑选一些最佳的EHR模型并加
2024-04-27 21:47:39 4.05MB deep-learning pytorch healthcare fhir
1
闪电战-火炬动物园中的贝叶斯层 BLiTZ是一个简单且可扩展的库,用于在PyTorch上创建贝叶斯神经网络层(基于“)。 通过使用BLiTZ图层和utils,您可以以不影响图层之间的交互的简单方式(例如,就像使用标准PyTorch一样)添加非证书并收集模型的复杂性成本。 通过使用我们的核心权重采样器类,您可以扩展和改进此库,从而以与PyTorch良好集成的方式为更大范围的图层添加不确定性。 也欢迎拉取请求。 我们的目标是使人们能够通过专注于他们的想法而不是硬编码部分来应用贝叶斯深度学习。 Rodamap: 为不同于正态的后验分布启用重新参数化。 指数 贝叶斯层的目的 贝叶斯层上的权重采样 有可能优化我们的可训练重量 的确,存在复杂度成本函数随其变量可微分的情况。 在第n个样本处获得整个成本函数 一些笔记和总结 引用 参考 安装 要安装BLiTZ,可以使用pip命令: pip
2024-04-24 16:41:44 136KB pytorch pytorch-tutorial pytorch-implementation
1
Deep Learning With Python_中文版+英文版+代码 目前来看是最全的
2024-04-16 10:23:06 29.91MB PYTHON Deep
1