学习数据挖掘和机器学习的一本非常著名的书。是第二版。不太完美的地方是,本书是英文版。
2024-01-26 20:45:02 9.08MB 数据挖掘 data mining Morgan.Kaufmann
1
Mastering Machine Learning with Python in Six Steps - 1E (2017) Mastering Machine Learning with Python in Six Steps - 1E (2017)
2024-01-19 23:11:56 4.74MB Mastering Machine Learning Python
1
RetinaFace C ++重新实现源参考资源RetinaFace带有python代码。 模型转换工具MXNet2Caffe您需要自己添加一些层,并且在caffe中没有upsam RetinaFace C ++重新实现源参考资源RetinaFace用python代码提供在Insightface中。 模型转换工具MXNet2Caffe您需要自己添加一些图层,并且在caffe中没有上采样,您可以用反卷积代替,并且可能会有一点精度损失。 来自mobilenet25的原始模型参考,我已经对其进行了重新培训。 演示$ mkdir build $ cd build / $ cmake ../ $使您需要修改CmakeList文件中的依赖路径。 测速硬件:1080Ti test1:mod
2024-01-17 00:21:28 6.66MB C/C++ Machine Learning
1
使用 Java 8 实现 JVM 特性 元循环(Metacircular) mini-jvm on mini-jvm on hotspot. 可以在 mini-jvm 里运行 mini-jvm . $ java -jar jvm-core/target/mini-jvm.jar -jar jvm-core/target/mini-jvm.jar -jar test.jar # Hello World! 动机 尝试了解 JVM 原理, Learning by doing 纸上得来终觉浅, 实践 用简单的代码帮助 Javaer 理解 JVM 快速体验 [Macos 用户] Hello world brew tap guxingke/repo && brew install mini-jvm cat < HelloWorld.java public class HelloWorld
2024-01-16 23:07:42 1.31MB interpreter jvm8 Java
1
A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
2024-01-13 11:04:46 4.97MB neural netwo machine lear
1
机器学习算法第二版 这是Packt发布的《 的代码库。 流行于数据科学和机器学习的算法 这本书是关于什么的? 机器学习以其强大而快速的大型数据集预测而获得了极大的普及。 但是,强大功能背后的真正力量是涉及大量统计分析的复杂算法,该算法搅动大型数据集并产生实质性见解。 本书涵盖以下激动人心的功能: 研究特征选择和特征工程过程 评估性能和误差权衡以进行线性回归 建立数据模型并使用不同类型的算法了解其工作方式 学习调整支持向量机(SVM)的参数 探索自然语言处理(NLP)和推荐系统的概念 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: from sklearn.svm import SVC from sklearn.model_selection import cross_val_score svc =
2023-12-15 16:31:18 97KB Python
1
很经典的参考书。 1 Introduction 2 Probability Distributions 3 Linear Models for Regression 4 Linear Models for Classification 5 Neural Networks 6 Kernel Methods 7 Sparse Kernel Machines 8 Graphical Models 9 Mixture Models and EM 10 Approximate Inference 11 Sampling Methods ...
2023-12-14 23:37:53 8.6MB Pattern Recognition Machine
1
经典!通俗易懂介绍虚拟机实现的一本教材。 (英文版,不过很容易看懂!)
2023-12-04 22:39:41 5.04MB 虚拟机 virtual machine
1
Machine Learning Yearning_英文版+中文版 (中文版会持续更新,并有更新的链接地址) 注:转载别人的,无商业目的,资源共享。
2023-11-30 13:39:47 33.66MB 机器学习
1
火炬指标 PyTorch的模型评估指标 火炬指标作为自定义库,以提供Pytorch共同ML评价指标,类似于tf.keras.metrics 。 如,Pytorch没有用于模型评估指标的内置库torch.metrics 。 这类似于的指标库。 用法 pip install --upgrade torch-metrics from torch_metrics import Accuracy ## define metric ## metric = Accuracy ( from_logits = False ) y_pred = torch . tensor ([ 1 , 2 , 3 , 4 ]) y_true = torch . tensor ([ 0 , 2 , 3 , 4 ]) print ( metric ( y_pred , y_true )) ## define metri
1