NI.Measurement.Studio.Enterprise.for.VS2008.v8.6 破解文件
2022-05-17 10:35:28 2KB Measurement Studio 8.6 Crack
1
Measurement_Studio 用户手册
2022-05-13 10:52:51 1.61MB Measurement_Studio vb.net c#
1
Measurement studio V8.6 带注册码的正式版本.安装后有例子程序.可应用于于VC中.很好的资源.因为文件太大,只能分成小份的上传
2022-05-03 16:05:24 33.5MB Measurement studio VC MFC
1
i.MX 8M Quad Power Consumption Measurement
2022-04-30 12:00:38 723KB imx
Principles of Planar Near-Field Antenna Measurements 介绍天线近场测量的基础知识 Contents Preface xi 1 Introduction 1 1.1 The phenomena of antenna coupling 1 1.2 Characterisation via the measurement process 4 1.2.1 Free space radiation pattern 6 1.2.2 Polarisation 7 1.2.3 Bandwidth 8 1.3 The organisation of the book 11 1.4 References 12 2 Maxwell’s equations and electromagnetic wave propagation 13 2.1 Electric charge 13 2.2 The EM field 14 2.3 Accelerated charges 16 2.4 Maxwell’s equations 18 2.5 The electric and magnetic potentials 24 2.5.1 Static potentials 24 2.5.2 Retarded potentials 24 2.6 The inapplicability of source excitation as a measurement methodology 28 2.7 Field equivalence principle 28 2.8 Characterising vector EM fields 30 2.9 Summary 33 2.10 References 33 3 Introduction to near-field antenna measurements 35 3.1 Introduction 35 3.2 Antenna measurements 35 3.3 Forms of near-field antenna measurements 40 3.4 Plane rectilinear near-field antenna measurements 43 3.5 Chambers, screening and absorber 44 3.6 RF subsystem 47 3.7 Robotics positioner subsystem 52 3.8 Near-field probe 56 3.9 Generic antenna measurement process 58 3.10 Summary 60 3.11 References 60 4 Plane wave spectrum representation of electromagnetic waves 63 4.1 Introduction 63 4.2 Overview of the derivation of the PWS 64 4.3 Solution of the scalar Helmholtz equation in Cartesian coordinates 65 4.3.1 Introduction to integral transforms 65 4.3.2 Fourier transform solution of the scalar Helmholtz equation 65 4.4 On the choice of boundary conditions 78 4.5 Operator substitution (derivative of a Fourier transform) 79 4.6 Solution of the vector Helmholtz equation in Cartesian coordinates 81 4.7 Solution of the vector magnetic wave equation in Cartesian coordinates 83 4.8 The relationship between electric and magnetic spectral components 84 4.9 The free-space propagation vector k 87 4.10 Plane wave impedance 88 4.11 Interpretation as an angular spectrum of plane waves 90 4.12 Far-field antenna radiation patterns: approximated by the angular spectrum 92 4.13 Stationary phase evaluation of a double integral 95 4.14 Coordinate free form of the near-field to angular spectrum transform 101 4.15 Reduction of the coordinate free form of the near-field to far-field transform to Huygens’ principle 104 4.16 Far-fields from non-planar apertures 106 4.17 Microwave holographic metrology (plane-to-plane transform) 107 4.18 Far-field to near-field transform 108 4.19 Radiated power and the angular spectrum 112 4.20 Summary of conventional near-field to far-field transform 115 4.21 References 117 5 Measurements – practicalities of planar near-field antenna measurements 119 5.1 Introduction 119 5.2 Sampling (interpolation theory) 120 5.3 Truncation, spectral leakage and finite area scan errors 121 5.4 Antenna-to-antenna coupling (transmission) formula 125 5.4.1 Attenuation of evanescent plane wave mode coefficients 136 5.4.2 Simple scattering model of a near-field probe during a planar measurement 137 5.5 Evaluation of the conventional near-field to far-field transform 138 5.5.1 Standard techniques for the evaluation of a double Fourier integral 139 5.6 General antenna coupling formula: arbitrarily orientated antennas 143 5.7 Plane-polar and plane-bipolar near-field to far-field transform 148 5.7.1 Boundary values known in plane-polar coordinates 150 5.7.2 Boundary values known in plane-bipolar coordinates 151 5.8 Regular azimuth over elevation and elevation over azimuth coordinate systems 156 5.9 Polarisation basis and antenna measurements 159 5.9.1 Cartesian polarisation basis – Ludwig I 159 5.9.2 Polar spherical polarisation basis 160 5.9.3 Azimuth over elevation basis – Ludwig II 161 5.9.4 Copolar and cross-polar polarisation basis – Ludwig III 163 5.9.5 Circular polarisation basis – RHCP and LHCP 165 5.10 Overview of antenna alignment corrections 169 5.10.1 Scalar rotation of far-field antenna patterns 169 5.10.2 Vector rotation of far-field antenna patterns 171 5.10.4 Rotation of copolar polarisation basis – generalized Ludwig III 173 5.10.5 Generalized compound vector rotation of far-field antenna patterns 174 5.11 Brief description of near-field coordinate systems 175 5.11.1 Range fixed system 176 5.11.2 Antenna mechanical system 177 5.11.3 Antenna electrical system 178 5.11.4 Far-field azimuth and elevation coordinates 178 5.11.5 Ludwig III copolar and cross-polar definition 178 5.11.6 Probe alignment definition (SPP) 178 5.11.7 General vector rotation of antenna radiation patterns 179 5.12 Directivity and gain 180 5.12.1 Directivity 180 5.12.2 Gain – by substitution method 181 5.12.3 Gain-transfer (gain-comparison) method 182 5.13 Calculating the peak of a pattern 183 5.13.1 Peak by polynomial fit 183 5.13.2 Peak by centroid 185 5.14 Summary 186 5.15 References 187 6Pr obe pattern characterisation 189 6.1 Introduction 189 6.2 Effect of the probe pattern on far-field data 189 6.3 Desirable characteristics of a near-field probe 191 6.4 Acquisition of quasi far-field probe pattern 193 6.4.1 Sampling scheme 194 6.4.2 Electronic system drift (tie-scan correction) 197 6.4.3 Channel-balance correction 198 6.4.4 Assessment of chamber multiple reflections 200 6.4.5 Correction for rotary errors 202 6.4.6 Re-tabulation of probe vector pattern function 205 6.4.7 Alternate interpolation formula 209 6.4.8 True far-field probe pattern 211 6.5 Finite element model of open-ended rectangular waveguide probe 213 6.6 Probe displacement correction 217 6.7 Channel-balance correction 217 6.8 References 218 7 Computational electromagnetic model of a planar near-field measurement process 219 7.1 Introduction 219 7.2 Method of sub-apertures 220 7.3 Aperture set in an infinite perfectly conducting ground plane 223 7.3.1 Plane wave spectrum antenna–antenna coupling formula 225 7.4 Vector Huygens’ method 227 7.5 Kirchhoff–Huygens’ method 229 7.6 Generalized technique for the simulation of near-field antenna measurements 233 7.6.1 Mutual coupling and the reaction theorem 234 7.7 Near-field measurement simulation 237 7.8 Reaction theorem 239 7.8.1 Lorentz reciprocity theorem (field reciprocity theorem) 240 7.8.2 Generalized reaction theorem 244 7.8.3 Mutual impedance and the reaction theorem 247 7.9 Summary 247 7.10 References 248 8 Antenna measurement analysis and assessment 249 8.1 Introduction 249 8.2 The establishment of the measure from the measurement results 249 8.2.1 Measurement errors 250 8.2.2 The sources of measurement ambiguity and error 253 8.2.3 The examination of measurement result data to establish the measure 256 8.3 Measurement error budgets 259 8.3.1 Applicability of modelling error sources 259 8.3.2 The empirical approach to error budgets 260 8.4 Quantitative measures of correspondence between data sets 261 8.4.1 The requirement for measures of correspondence 261 8.5 Comparison techniques 263 8.5.1 Examples of conventional data set comparison techniques 263 8.5.2 Novel data comparison techniques 267 8.6 Summary 282 8.7 References 283 9 Advanced planar near-field antenna measurements 285 9.1 Introduction 285 9.2 Active alignment correction 285 9.2.1 Acquisition of alignment data in a planar near-field facility 287 9.2.2 Acquisition of mechanical alignment data in a planar near-field facility 289 9.2.3 Example of the application of active alignment correction 291 9.3 Amplitude only planar near-field measurements 296 9.3.1 PTP phase retrieval algorithm 297 9.3.2 PTP phase retrieval algorithm – with aperture constraint 301 9.4 Efficient position correction algorithms, in-plane and z−plane corrections 303 9.4.1 Taylor series expansion 305 9.4.2 K-correction method 311 9.5 Partial scan techniques 315 9.5.1 Auxiliary translation 315 9.5.2 Rotations of the AUT about the z-axis 319 9.5.3 Auxiliary rotation – bi-planar near-field antenna measurements 320 9.5.4 Near-field to far-field transformation of probe corrected data 329 9.5.5 Applicability of the poly-planar technique 335 9.5.6 Complete poly-planar rotational technique 338 9.6 Concluding remarks 342 9.7 References 344 Appendix A: Other theories of interaction 347 A.1 Examples of postulated mechanisms of interaction 347 Appendix B: Measurement definitions as used in the text 354 Appendix C: An overview of coordinate systems 357 C.1 Antenna mechanical system (AMS) 357 C.2 Antenna electrical system (AES) 357 C.3 Far-field plotting systems 358 C.4 Direction cosine 358 C.5 Azimuth over elevation 360 C.6 Elevation over azimuth 361 C.7 Polar spherical 362 C.8 Azimuth and elevation (true-view) 364 C.9 Range of spherical angles 365 C.10 Transformation between coordinate systems 366 C.11 Coordinate systems and elemental solid angles 367 C.12 Relationship between coordinate systems 368 C.13 Azimuth, elevation and Roll angles 371 C.14 Euler angles 373 C.15 Quaternion 374 C.16 Elemental solid angle for a true-view coordinate system 377 Appendix D: Trapezoidal discrete Fourier transform 380 Appendix E: Calculating the semi-major axis, semi-minor axis and tilt angle of a rotated ellipse 384 Index 389
2022-03-25 05:09:19 5.22MB Antenna Near-Field Measurement
1
pyA2L pyA2L是用Python编写的ASAM MCD-2MC处理库。 ASAM MCD-2MC,也称为ASAP2,是一种非XML文件格式,用于定义校准参数,可测量变量和特定于通信接口的参数,广泛用于汽车应用中。 ASAP2通常与CCP(CAN校准协议)或XCP(通用校准协议)一起使用。 支持的版本:1.6 入门 pyA2L是pySART(Python的简化AUTOSAR-Toolkit)的一部分。
2022-02-26 11:02:07 221KB python asap automotive measurement-protocol
1
解压密码 123456 因注册鸡会引起误报, 只共享了注册玛, 够用了. The ARTA software consists of following programs: ARTA - program for the impulse response measurement and for real-time spectrum analysis and frequency response measurements. STEPS - program for frequency response measurements with stepped-sine excitation. LIMP - program for the loudspeaker impedance measurement and loudspeaker parameters estimation. The ARTA program has functions of following measurement systems: Impulse response measurement system with signal generators: periodic white noise, periodic pink noise, MLS, linear and logarithmic swept-sine. Dual channel Fourier analyzer with signal generators: white noise, pink noise, periodic white noise and periodic pink noise. Single channel Fourier analyzer with signal generators: periodic white noise and periodic pink noise. Spectrum, octave band and THD analyzer with signal generators: sine, two sine, multitone, periodic square and triangle, white noise, pink noise, periodic white noise and periodic pink noise. Triggered storage scope with spectrum and short-time Fourier analysis. Two-channel voltage level meter and third octave analyzer With calibrated microphone, ARTA can be used as a virtual IEC class 1 SPL meter with a real time modes: Integrating SPL meter with 24 hours data logging, Octave SPL meter with noise rating (NR, NC, PNC, RC, NCB), Third octave SPL meter with report of specific loudness, loudness in sones and loudness level in phones. The ARTA program is also a powerful analyzer of: Gated frequency response, Smoothed frequency response (in 1/n-octave bands), Step response, Impulse response envelope (ETC – curve), Cumulative spectral decay waterfall graphs and sonogram, Burst decay waterfall graphs and sonogram, Energy decay in reverberant environments, Room acoustical parameters, Directivity patterns, Speech intelligibility measures: MTF, STI, RASTI, %AL. The STEPS program enables the measurement of the frequency response with a high dynamic range and a high noise immunity. Simultaneously with a frequency response measurement the STEPS estimates levels of 2nd, 3rd, 4th, 5th and higher order harmonic distortions.
2022-02-19 19:40:11 6.31MB ARTA Audio Measurement Analysis
1
在该文件中,功率因数已使用公式计算; 功率因数=Real_power/视在功率。
2022-01-11 11:33:09 22KB matlab
1
matlab超声波原始码超声波测量仪 使用超声波传感器和单轴线性系统的测量设置 介绍: 我们进行科学项目的目的是开发一种发射和接收超声波的测量装置。 接收到的数据应处理为一维超声图像。 此外,还要研究超声波发射器的控制对测量数据的影响。 因此,我们首先从超声波传感器的基本原理开始,然后在Arduino和串行监视器的帮助下实现了超声波传感器的基本应用。 我们在串行监视器中实时显示了距离。 根据问题陈述,我们现在需要开发一种可以映射传感器数据的测量设置。 为此,我们最终确定了线性导轨系统,以Arduino为从属系统,以MATLAB为主要控制器。 超声波传感器: 超声波传感器会定期发出短的高频声脉冲。 它们以声速在空气中传播。 如果它们撞击物体,则会将它们作为回波信号反射到传感器,传感器本身会根据发射信号和接收回波之间的时间间隔来计算到目标的距离。 由于到物体的距离是通过测量飞行时间而不是通过声音的强度来确定的,因此超声波传感器在抑制背景干扰方面非常出色。 几乎所有反射声音的材料都可以被检测到,而不论它们的颜色如何。 对于超声波传感器来说,即使透明的材料或薄的箔片也没有问题。 超声波传感器可
2022-01-10 15:16:46 7.47MB 系统开源
1
The IFPUG Guide to IT and Software Measurement - This article proposes a suite of related metrics that are based on the logic of Function Points, but expanding that logic to other business and technical areas. The metrics are hypothetical and additional research would be needed to actually develop such a metrics suite.
2021-12-31 10:01:07 6.43MB IFPUG Sizing
1