目前特定主题情感分析任务中,传统的基于注意力的深度学习模型缺乏对主题特征和情感信息的有效关注。针对该问题,构建了融合主题特征的深层注意力的LSTM模型(deeper attention LSTM with aspect embedding,AE-DATT-LSTM),通过共享权重的双向LSTM将主题词向量和文本词向量进行训练,得到主题特征和文本特征进行特征融合;经过深层注意力机制的处理,由分类器得到相应主题的情感分类结果。在SemEval-2014 task4和SemEval-2017 task4数据集上的实验结果表明,该方法在特定主题情感分析任务中,较之前基于注意力的情感分析模型在准确率和稳定性上有了进一步的提高。主题特征和深层注意力机制的引入,对于基于特定主题的情感分类任务具有重要的意义,为舆情分析、问答系统和文本推理等领域提供了方法的支持。
1
脑机接口是一种通过特定手段对脑电信号进行提取,利用信号处理算法解码,分析大脑信号,识别人脑的技术。为了提高二分类运动想象脑电信号的识别准确率,该文提出了一种基于LSTM神经网络的脑电信号分类方法,以2003年BCI国际竞赛的公开数据对所提出的方法进行验证。实验结果证明,LSTM神经网络训练出的模型具有良好的效果,分类的平均准确率接近90%。
1
时序数据-LSTM模型-实现用电量预测,里面包含数据和代码,代码讲解见:https://mtyjkh.blog.csdn.net/article/details/115612319
2021-04-13 14:08:29 549KB LSTM 深度学习
1
Tensorflow-LSTM-股票预测DEMO Tensorflow-LSTM-股票预测DEMO
2021-03-30 14:53:45 222KB tensorflow python lstm 深度学习
1
这个文档有一个比较直观的关于时间步的理解,对于初学RNN网络的人来说,其中有些概念比较难懂,希望这个能帮助大家。
2019-12-21 22:17:10 195KB LSTM 深度学习 timesteps 时间步
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2019-12-21 21:48:23 391KB 时间序列预测 LSTM 深度学习 python
1
用LSTM长短期记忆网络实现的金融序列单步预测的代码,基于keras框架搭建的模型,可以用于参考学习
2019-12-21 20:40:41 291KB RNN LSTM 深度学习 keras
1