资源详细描述可以看我的博客: 算法笔记(5)-K最近邻算法及python代码实现 https://blog.csdn.net/li1873997/article/details/124729366
2022-05-31 22:06:43 240KB 源码软件 python 开发语言 机器学习
java实现的KD树代码,实现了最近邻查询
2022-05-20 23:36:47 134KB KD树 最近邻算法
1
机器学习与算法源代码7: K近邻算法.zip
2022-05-18 19:08:13 7.15MB 算法 机器学习 近邻算法 源码软件
K近邻算法,内涵详细代码,KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
2022-05-12 13:13:05 384B K近邻分类
1
在本文中,我们提出了一种使用机器学习方法预测某个学科的补充课程的模型。 这是一个基本的分类系统,可以发现学生是否会获得补充。 可以显示获得补充的个人或受试者明智的机会。 该模型使用K最近邻算法,这是一种懒惰算法,可提供较高的准确性。 所提出的方法将有助于分析补充学生,同时教师可以分析大概有多少学生将获得补充,并决定他/她在教书时应该给予多少额外的关注。
2022-05-10 16:18:48 496KB Classification K Nearest Neighbour
1
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:48 1.31MB 机器学习 学习 近邻算法 文档资料
邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据集合中每一个记录进行分类的方法. KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路非常简单直观:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别 [2] 。 该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最邻近点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。另外还有一种 Reverse KNN法,它能降低KNN算法的计算复杂度,提高分类的效率 [2] 。 KNN算法比较适用于样本容量比较大的类域的自动分类
2022-04-27 16:05:47 4.11MB 机器学习 KNN算法 K-近邻算法 人工智能
1
针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm, WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit , LRL-KNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。
1
机器学习实战 - k近邻算法(KNN算法)总结 适合机器学习实战入门新手 K-近邻算法,又称为 KNN 算法,是数据挖掘技术中原理最简单的算法。 KNN 的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。 优点 1简单好用,容易理解,精度高,理论成熟,即可以用来做分类也可以用来做回归 2可用于数值型数据和离散型数据 3无数据输入假定 4适合对稀有事件进行分类 缺点 1计算复杂性高;空间复杂性高 2计算量太大,所以一般数值很大的时候不用这个,但是单个样本又不能太少,否则容易发生误分 3样本不平衡问题(即某些类别的样本数量很多,某些类别的样本数量很少) 4可理解性比较差,无法给出数据的内在含义
2022-04-13 17:06:21 1.45MB 算法 机器学习 近邻算法 人工智能
1
k近邻算法 用于多媒体信息处理 一种算法 人工智能 PPT
2022-04-12 11:45:24 1.29MB PPT
1