瓦瑟斯坦·甘 Wasserstein GAN(WGAN)论文的PyTorch实现。 该项目正在尝试出于教育目的复制LSUN和CIFAR10实验。 在这个项目中,我们还可以看到深度卷积生成对抗网络(DCGAN)如何演变成WGAN。 注意:DCGAN最初是使用Keras 1实现的,并迁移到了Keras 2。 Jupyter笔记本 火炬 LSUN卧室数据集 用于下载和预处理LSUN LMDB数据的脚本 火炬 CIFAR10 凯拉斯2 MNIST 预训练模型 PyTorch权重文件: 生成的图像样本 更多生成的样本
1
机器学习第二版中Tom准备增加的内同,关于生成模型、判别模型以及朴素贝叶斯和逻辑回归的介绍,在作者主页下载的
2022-05-05 17:04:01 133KB 机器学习
1
我们介绍了SinGAN,一个可以从单一自然图像中学习的无条件生成模型。我们的模型经过训练,能够捕捉图像内部patch的分布,然后能够生成与图像具有相同视觉内容的高质量、多样化的样本。SinGAN包含一个完全卷积的GANs金字塔,每个GANs负责学习图像中不同尺度上的patch分布。这允许生成具有显著可变性的任意大小和高宽比的新样本,同时保持训练图像的整体结构和精细纹理。与以往的单一图像GAN方案相比,我们的方法不仅限于纹理图像,而且没有条件(即从噪声中生成样本)。用户研究证实,生成的样本通常被混淆为真实的即时消息。我们说明了SinGAN在图像处理任务中的广泛应用。 ———————————————— 版权声明:本文为CSDN博主「Asure_AI」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/Asure_AI/article/details/102869213
2022-05-03 22:08:03 124.07MB ICCV GAN 对抗生成网络 代码
1
阿根 | | PyTorch实现可控制的人的图像合成。 ,,,,,北京大学和ByteDance人工智能实验室,CVPR 2020(口服)。 组件属性传递 姿势转移 要求 Python3 pytorch(> = 1.0) 火炬视觉 麻木 科学的 scikit图像 枕头 大熊猫 tqdm 支配 入门 您可以直接从下载我们生成的图像(在Deepfashion中)。 安装 克隆此仓库: git clone https://github.com/menyifang/ADGAN.git cd ADGAN 数据准备 为了方便起见,我们使用DeepFashion数据集并提供数据集拆分文件,提取的关键点文件和提取的细分文件。 推荐数据集结构为: +—deepfashion | +—fashion_resize | +--train (files in 'train.l
1
UNet Stylegan2 使用UNet Discriminator实现Stylegan2。该存储库的工作方式与大致相同。只需将所有stylegan2_pytorch命令替换为stylegan2_pytorch unet_stylegan2 。 更新:结果非常好。将需要研究将其与其他一些技术结合起来,然后我将编写完整的使用说明。 安装 $ pip install unet-stylegan2 用法 $ unet_stylegan2 --data ./path/to/data 引文 @misc { karras2019analyzing , title = { Analyzing and Improving the Image Quality of StyleGAN } , author = { Tero Karras and Samuli Laine and Miika
1
来自新加坡NUS图神经网络大牛Xavier Bresson教授关于生成模型VAE与GAN的总结PPT,全面概括了生成式模型VAE与GAN的应用,非常值得关注! Variational autoencoders (VAE) Lab on VAE Generative Adversarial Networks (GAN) Labs on GAN Conclusion
2022-04-07 12:05:56 11.43MB 神经网络 机器学习 深度学习 人工智能
EdgeConnect:具有对抗性边缘学习的生成图像修复 | 介绍: 我们开发了一种新的图像修补方法,可以更好地再现填充区域,这些填充区域显示出精细的细节,这是受我们对艺术家工作方式的理解所启发:首先是线条,然后是颜色。 我们提出了一个两阶段对抗模型EdgeConnect,该模型由一个边缘生成器和一个图像完成网络组成。 边缘生成器使图像的缺失区域(规则的和不规则的)产生幻觉,并且图像完成网络使用幻觉的边缘作为先验来填充缺失区域。 该系统的详细说明可以在我们的找到。 (a)输入缺少区域的图像。 缺失的区域以白色表示。 (b)计算的边缘遮罩。 黑色绘制的边缘是使用Canny边缘检测器(针
1
GIQA:生成的图像质量评估 这是ECCV2020“ GIQA:生成的图像质量评估”的正式pytorch实现( )。 该存储库的主要贡献者包括Microsoft Research Asia的Gu Shuyang,Bao Jianmin Bao,Dong Chen和Fang Wen。 相关论文采用GMM-GIQA来改善GAN的性能:PriorGAN( )。 介绍 GIQA旨在解决单个生成图像的质量评估问题。 在此源代码中,我们发布了易于使用的GMM-GIQA和KNN-GIQA代码。 引文 如果您发现我们的代码对您的研究有所帮助,请考虑引用: @article{gu2020giqa, title={GIQA: Generated Image Quality Assessment}, author={Gu, Shuyang and Bao, Jianmin and Chen, D
1
创造自己的生成艺术! 该笔记本可让您通过调整输入来创建自己的艺术作品。 如果您对算法及其工作/绘制方式感兴趣,则前几个单元格将其分解为多个步骤,并在给定输入集的每一步显示输出。 但是,如果您只想制作一些很酷的艺术品,则可以在最后一个单元格中调整输入。 这些是使用ipywidgets库制作的。 输入项 n生成的多边形数量\ n n_fill_lines多边形内的线数\ n col1, col2, col3多边形的颜色\ n min_scalar中心大小\ n function -更改多边形位置的函数 period -特别是指正弦函数的周期。 如果未选择正弦,将不会进行更改 adj_magnitude多边形的数量由函数调整 min_vertices删除所有顶点数量等于或小于所选数量的多边形
2022-02-27 11:13:22 411KB JupyterNotebook
1
生成压缩 TensorFlow实现,用于使用生成对抗网络来学习图像压缩。 该方法由Agustsson等开发。 等基于。 提出的想法非常有趣,并且对它们的方法进行了详细描述。 用法 代码取决于 # Clone $ git clone https://github.com/Justin-Tan/generative-compression.git $ cd generative-compression # To train, check command line arguments $ python3 train.py -h # Run $ python3 train.py -opt momen
1