深入分析中国防火长城 Abstract: Created by the Golden Shield Project, the Great Firewall of China (GFW) is the backbone of world’s largest system of censorship. As an on-path system, the GFW can monitor traffic and inject additional packets, but cannot stop in-flight packets from reaching its destination. It achieves censorship using three main techniques: First, it inspects all Internet traffic between China and the rest of the world...
2022-06-24 13:03:03 5.14MB GFW
1
17CVPR_CODE_Learning Dynamic Guidance for Depth Image Enhancement 17 cvpr 代码
2022-05-23 12:09:08 37.6MB Deep CNN Denoiser Prior
1
深度图补全的目的是从深度传感器捕获的稀疏图预测密集像素级深度。它在自动驾驶、三维重建、增强现实和机器人导航等各种应用中发挥着至关重要的作用。最近在这项任务上的成功已经被证明和主导基于深度学习的解决方案。在这篇论文中,我们第一次提供了一个全面的文献综述,帮助读者更好地把握研究趋势,清楚地了解当前的进展。我们从网络架构、损失函数、基准数据集和学习策略的设计方面对相关研究进行了调研,并提出了一种新的分类法来分类现有的方法。此外,我们还对两种广泛使用的基准数据集(包括室内数据集和室外数据集)上的模型性能进行了定量比较。最后,我们讨论了前人工作所面临的挑战,并对未来的研究方向提出了一些见解。
2022-05-20 22:05:08 4.91MB 文档资料 深度学习 人工智能
1
【导读】注意力机制是深度学习核心的构建之一,注意力机制是深度学习核心的构件之一,来自Mohammed Hassanin等学者发表了《深度学习视觉注意力》综述论文,提供了50种注意力技巧的深入综述,并根据它们最突出的特征进行了分类。
2022-04-21 13:05:24 3.48MB 深度学习 分类 机器学习 人工智能
1
迈向稳健的单眼深度估计:用于零镜头跨数据集传输的混合数据集 该存储库包含用于从单个图像计算深度的代码。 它伴随我们的: 迈向稳健的单眼深度估计:用于零镜头跨数据集传输的混合数据集RenéRanftl,Katrin Lasinger,David Hafner,Konrad Schindler,Vladlen Koltun MiDaS v2.1在10个数据集(ReDWeb,DIML,电影,MegaDepth,WSVD,TartanAir,HRWSI,ApolloScape,BlendedMVS,IRS)上进行了多目标优化训练。 在5个数据集(本文中的MIX 5 )上训练过的原始模型可以在找到。 变更日志 [2020年11月]发布了MiDaS v2.1: 经过10个数据集训练的新模型,其度平均比高出 新的轻量级模型可在移动平台上实现。 适用于和示例应用程序 ,可在机器人上轻松部署 [2
1
前言 优化随机森林算法,正确率提高1%~5%(已经有90%+的正确率,再调高会导致过拟合) 论文当然是参考的,毕竟出现早的算法都被人研究烂了,什么优化基本都做过。而人类最高明之处就是懂得利用前人总结的经验和制造的工具(说了这么多就是为偷懒找借口。hhhh) 优化思路 1. 计算传统模型准确率 2. 计算设定树木颗数时最佳树深度,以最佳深度重新生成随机森林 3. 计算新生成森林中每棵树的AUC,选取AUC靠前的一定百分比的树 4. 通过计算各个树的数据相似度,排除相似度超过设定值且AUC较小的树 5. 计算最终的准确率 主要代码粘贴如下(注释比较详细,就不介绍代码了) #-*- c
2022-04-16 10:32:41 90KB depth num python
1
视频深度图——CS179项目 使用 Python 和 CUDA 生成实时视频深度图。 运行说明: 在项目根目录下; python scripts/run_disparity.py NOTE: stereo-video has to be located in $PROJECTROOT/videos/ subdirectory video must also be a juxtapose stereo video pair 依赖项: 可 Pip 的依赖项在requirements.txt中列出。 然而,这个项目也依赖于 OpenCV。 使用 Python3.4,我们选择使用 OpenCV 3.0.0-rc1,在 Ubuntu 15.04 (x64) 上从源代码编译。 安装脚本 opencv.sh 位于misc/ 。 脚本来自 注意:我们建议使用
2022-04-01 16:20:27 13KB Cuda
1
This book has been written for a wider audience, including students and practitioners interested in current consumer depth cameras and the data they provide. This book focuses on the system rather than the device and circuit aspects of the acquisition equipment. Processing methods required by the 3D nature of the data are presented within general frameworks purposely as independent as possible from the technological characteristics of the measurement instruments used to capture the data. The results are typically presented by practical exemplifications with real data to give the reader a clear and concrete idea about the actual processing possibilities. This book is organized into three parts, the first devoted to the working principles of ToF and structured light depth cameras, the second to the extraction of accurate 3D information from depth camera data through proper calibration and data fusion techniques, and the third to the use of 3D data in some challenging computer vision applications.
2022-03-30 20:24:21 12.55MB TOF 结构光
1
高清资源,拿去看吧。我已经看完了,深入浅出,夯实基础。
2022-03-29 00:30:20 9.89MB css in depth css好书
1