近年来,面部识别技术已经成为模式识别领域中的热门话题。 人脸是人类最重要的生物特征之一,其中包含许多重要信息,例如身份,性别,年龄,表情,种族等。 年龄是身份歧视的重要参考,年龄估计可以潜在地应用于人机交互,计算机视觉和商业智能。 本文解决了准确估计人类年龄的问题。 年龄估计系统通常由年龄特征提取和特征分类组成。 在特征提取部分,Gabor小波和局部二值模式(LBP)等众所周知的纹理描述符已用于特征提取。 在我们的方法中,我们使用卷积神经网络(CNN)提取面部特征。 通过建立基于丰富训练数据的多级CNN模型来获得卷积激活特征。在特征分类部分,将不同年龄划分为13个组,并使用支持向量机(SVM)分类器进行分类。 实验结果表明,在使用我们的老化数据库时,该方法的性能优于以前的方法。
1