传统A*算法与创新版对比:融合DWA规避障碍物的仿真研究及全局与局部路径规划,1.传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 算法经过创新改进,两套代码就是一篇lunwen完整的实验逻辑,可以拿来直接使用 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 可根据自己的想法任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 绝对的高质量。 ,关键词:A*算法; 改进A*算法; 算法性能对比; 融合DWA; 局部路径规划; 全局路径规划; 障碍物规避; 地图设置; 仿真结果; 姿态位角变化曲线。,"改进A*算法与DWA融合:全局路径规划与动态障碍物规避仿真研究"
2025-05-09 00:18:58 898KB
1
内容概要:本文详细分析了TDCA算法在自采数据中表现不佳的可能原因,并提出了相应的改进建议。首先,从算法敏感性方面指出时空滤波器对噪声敏感,建议增加预处理步骤如带阻滤波和ICA去除伪迹;信号对齐问题则需要使用同步触发设备并在预处理阶段重新对齐触发信号与EEG数据。其次,在数据采集与范式设计方面,强调了刺激参数与清华数据集差异、通道配置与空间模式不匹配以及校准数据量不足等问题,并给出了具体的调整建议,包括检查刺激频率、优化电极配置、增加试次数等。最后,考虑到个体差异与视觉疲劳、数据分段与时间窗选择等因素,提出了引入个性化校准、尝试不同时间窗长度等措施。改进策略总结为优化预处理流程、验证刺激参数、调整通道配置、增加校准数据量和引入迁移学习五个方面。 适合人群:从事脑机接口研究或TDCA算法应用的研究人员、工程师和技术人员。 使用场景及目标:①帮助研究人员分析TDCA算法在自采数据中表现不佳的原因;②指导研究人员通过优化预处理流程、验证刺激参数等方式改进TDCA算法的应用效果。 其他说明:若上述调整仍无效,可进一步提供数据样例或实验参数细节,以便针对性分析。文章提供的建议基于对TDCA算法特性的深入理解,旨在提高算法在实际应用中的性能和稳定性。
2025-05-07 19:44:00 17KB 预处理技术
1
内容概要:本文介绍了一种改进的视觉Transformer(ViT)模型,重点在于引入了三重注意力机制(TripletAttention)。TripletAttention模块结合了通道注意力、高度注意力和宽度注意力,通过自适应池化和多层感知机(MLP)来增强特征表达能力。具体实现上,首先对输入特征图进行全局平均池化和最大池化操作,然后通过MLP生成通道注意力图;同时,分别对特征图的高度和宽度维度进行压缩和恢复,生成高度和宽度注意力图。最终将三种注意力图相乘并与原特征图相加,形成增强后的特征表示。此外,文章还展示了如何将TripletAttention集成到预训练的ViT模型中,并修改分类头以适应不同数量的类别。; 适合人群:熟悉深度学习和计算机视觉领域的研究人员和技术开发者,尤其是对注意力机制和Transformer架构有一定了解的人群。; 使用场景及目标:①研究和开发基于Transformer的图像分类模型时,希望引入更强大的注意力机制来提升模型性能;②需要对现有ViT模型进行改进或扩展,特别是在特征提取和分类任务中追求更高精度的应用场景。; 阅读建议:本文涉及较为复杂的深度学习模型和注意力机制实现细节,建议读者具备一定的PyTorch编程基础和Transformer理论知识。在阅读过程中可以结合代码逐步理解各个模块的功能和相互关系,并尝试复现模型以加深理解。
2025-05-06 10:07:59 3KB Pytorch 深度学习 图像处理
1
内容概要:本文介绍了一种基于YOLOv8改进的高精度红外小目标检测算法,主要创新点在于引入了SPD-Conv、Wasserstein Distance Loss和DynamicConv三种关键技术。SPD-Conv通过空间到深度变换保留更多小目标特征,Wasserstein Distance Loss提高了对小目标位置和尺寸差异的敏感度,DynamicConv则实现了卷积核的动态调整,增强了对不同特征模式的适应性。实验结果显示,改进后的算法在红外小目标检测任务中取得了显著提升,mAP从0.755提高到0.901,同时在其他小目标检测任务中也有良好表现。 适合人群:从事计算机视觉、目标检测研究的技术人员,尤其是对红外小目标检测感兴趣的开发者。 使用场景及目标:适用于需要高精度检测红外小目标的应用场景,如工业质检、无人机监控、卫星图像分析等。目标是提高小目标检测的准确性和召回率,降低误检率。 其他说明:文中提供了详细的代码实现和技术细节,帮助读者理解和复现实验结果。建议在实践中根据具体应用场景调整模型配置和参数设置。
2025-05-05 20:41:18 954KB
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
六自由度机械臂RRT路径规划与梯形速度规划的避障实现:附详细注释与改进动图曲线分析,六自由度机械臂RRT路径规划与梯形速度规划实现避障的算法研究及曲线绘制分析,六自由度机械臂RRT路径规划算法梯形速度规划规划,实现机械臂避障。 并绘制相关曲线: 1.经过rrt算法规划得到的路径; 2.关节角度变化曲线、关节速度曲线; 3.机械臂避障动图。 代码有详细注释,自己学习后进行了标注和改进。 ,RRT路径规划算法; 机械臂避障; 梯形速度规划; 关节角度变化曲线; 关节速度曲线; 路径规划结果; 改进后的代码注释。,基于RRT算法的六自由度机械臂避障路径规划与速度规划
2025-04-30 17:21:50 452KB kind
1
内容概要:本文档主要介绍了局部特征增强模块(LFE)的设计与实现,以及将其应用于ShuffleNet V2神经网络模型的方法。LFE模块包括通道注意力机制和空间注意力机制,通过这两个机制计算出的注意力图来增强输入特征图。具体来说,通道注意力机制通过全局平均池化、两个卷积层和Sigmoid激活函数来生成通道权重;空间注意力机制则通过一个卷积层和Sigmoid激活函数生成空间权重。接着定义了`add_lfe_to_stage`函数,用于将LFE模块插入到指定阶段的每个子模块之后。最后,`create_model`函数创建了一个带有LFE模块的ShuffleNet V2模型,并修改了最后一层全连接层的输出类别数。; 适合人群:对深度学习有一定了解,特别是熟悉PyTorch框架和卷积神经网络的开发者或研究人员。; 使用场景及目标:①理解注意力机制在卷积神经网络中的应用;②掌握如何自定义并集成新的模块到现有网络架构中;③学习如何调整预训练模型以适应特定任务需求。; 阅读建议:读者应具备基本的Python编程能力和PyTorch使用经验,在阅读时可以尝试运行代码片段,结合官方文档深入理解各个组件的作用和参数设置。
1
内容概要:本文详细介绍了如何利用改进版蛇优化算法(GOSO/ISO)优化XGBoost的回归预测模型。首先,通过混沌映射初始化种群,使初始解更加均匀分布,避免随机初始化的局限性。其次,采用减法优化器改进位置更新公式,增强算法的勘探能力和收敛速度。最后,加入反向学习策略,帮助算法跳出局部最优解。文中提供了详细的MATLAB代码实现,涵盖混沌映射、减法优化器、反向学习以及XGBoost参数调优的具体步骤。此外,还讨论了多种评价指标如MAE、MSE、RMSE、MAPE和R²,用于全面评估模型性能。 适合人群:具备一定机器学习和MATLAB编程基础的研究人员和技术开发者。 使用场景及目标:适用于需要高效调优XGBoost参数的回归预测任务,特别是在处理复杂非线性关系的数据集时。目标是提高模型的预测精度和收敛速度,减少人工调参的时间成本。 其他说明:文中提到的方法已在多个数据集上进行了验证,如电力负荷预测、混凝土抗压强度预测等,取得了显著的效果提升。建议读者在实践中结合具体应用场景调整参数范围和混沌映射类型。
2025-04-29 16:28:37 4.12MB
1
基于RRT的路径规划优化及RRT改进策略探讨,改进RRT路径规划算法研究:优化与性能提升的探索,改进RRT 路径规划 rrt 改进 —————————————— ,改进RRT; 路径规划; rrt 改进,改进RRT路径规划算法研究 在现代机器人技术与自动化领域中,路径规划算法扮演着至关重要的角色,它直接影响着机器人的移动效率与执行任务的能力。快速随机树(Rapidly-exploring Random Tree,简称RRT)算法因其在高维空间中的高效性,成为了研究者们关注的焦点。RRT算法的基本思想是通过随机采样的方式构建出一棵不断延伸的树,逐步覆盖整个空间,最终找到一条从起点到终点的路径。 然而,传统的RRT算法在处理复杂环境或具有特定约束条件的问题时,可能存在效率不高、路径质量不佳等问题。因此,对RRT算法的优化与改进成为了学术界和工业界研究的热点。优化的方向主要包括提升算法的搜索效率、降低路径长度、提高路径质量、增强算法的实时性以及确保算法的鲁棒性等方面。 在探索路径规划算法的改进之路上,研究者们提出了各种策略。比如,通过引入启发式信息来引导采样的过程,使得树能够更快地向着目标区域生长;或者通过优化树的扩展策略,减少无效的探索,从而提高算法的效率。此外,还有一些研究集中在后处理优化上,即在RRT算法得到初步路径后,通过一些路径平滑或者优化的技术来进一步提升路径的质量。 针对特定的应用场景,如机器人在狭窄空间中的导航、多机器人系统的协同路径规划等,研究人员也提出了许多创新的改进方法。例如,可以在RRT的基础上结合人工势场法来处理局部路径规划中的动态障碍物问题,或者设计特定的代价函数来考虑机器人的动力学特性。 在研究的过程中,学者们还开发了许多基于RRT算法的变体。例如,RRT*算法通过引入回溯机制来改进路径,使得最终的路径不仅连接起点和终点,还能在保持连通性的同时,追求路径的最优化。还有RRT-Connect算法、Bi-directional RRT算法等,这些变体在保证RRT算法的基本特性的同时,通过一些策略上的调整来提升算法性能。 路径规划算法的研究领域充满了挑战与机遇。RRT算法及其改进策略的研究不仅为机器人导航提供了解决方案,也为其他领域如无人机飞行路径规划、智能车辆的自动驾驶等提供了借鉴。随着计算机技术的发展和算法的不断进步,我们可以预期未来的路径规划算法将会更加智能、高效和鲁棒。
2025-04-25 09:46:06 1.81MB rpc
1
EBWO改进白鲸算法, 一种混合改进的白鲸优化算法 EBWO算法 改进点:两个点 1、引入准反向学习QOBL策略,提高算法的迭代速度 2、引入旋风觅食策略,提高算法开发能力 改进后的EBWO算法与原始BWO、GWO、WOA、SSA进行对比 效果好的不是一点点 包含23种基准测试函数均有 在当今快速发展的信息时代,优化算法作为解决复杂问题和提高系统性能的关键技术,一直受到广泛关注。白鲸优化算法(BWO)是近年来提出的一种新型智能优化算法,它模仿了白鲸捕食的行为,通过模拟白鲸在海洋中的觅食行为来解决优化问题。然而,像其他算法一样,BWO算法在实际应用中也存在一定的局限性,比如搜索效率和开发能力的不足。因此,为了克服这些缺陷,研究者们不断地对BWO算法进行改进和优化,EBWO(改进白鲸优化算法)应运而生。 EBWO算法引入了两个重要的改进策略:准反向学习(QOBL)策略和旋风觅食策略。QOBL策略的引入显著提高了算法的迭代速度。传统算法在优化过程中往往会陷入局部最优解,而无法快速跳出,导致效率低下。QOBL策略通过模仿自然界中动物的反向逃逸行为,允许算法在遇到不利于搜索的方向时,能够迅速调整方向,从而加快迭代速度,提高全局搜索能力。EBWO算法还引入了旋风觅食策略,这增强了算法的开发能力,即在找到全局最优解的邻域后,能更深入地挖掘这个区域,提高解的质量。这一策略使得EBWO算法能够在高维搜索空间中更加灵活和高效地找到问题的最优解。 通过与其他先进算法,如灰狼优化算法(GWO)、鲸鱼优化算法(WOA)和沙蚤算法(SSA)等的对比分析,EBWO算法在多种基准测试函数上的表现均优于它们。这表明,改进后的EBWO算法能够更有效地解决工程和科学领域中遇到的各种复杂优化问题。 此外,为了更好地理解和分析EBWO算法,在技术支持文档中也包含了算法的详细介绍和解析,以及对算法性能的详细评估。文档中提及的23种基准测试函数,覆盖了不同类型的优化问题,从简单的单峰函数到复杂的多峰函数,这些测试函数的使用有助于全面评估EBWO算法在各种条件下的性能。 通过这些基准测试函数的评估,我们可以看到EBWO算法不仅在理论上具有创新性,而且在实际应用中也显示出了良好的性能和强大的竞争力。它为解决各种工程优化问题提供了新的思路和方法,对于推动优化算法的发展具有重要意义。 EBWO算法作为一种混合改进的白鲸优化算法,通过引入QOBL策略和旋风觅食策略,有效提高了算法的搜索效率和开发能力。该算法在与多个先进算法的性能对比中表现出色,为解决优化问题提供了新的选择。随着算法在各个领域的广泛应用,相信EBWO算法将会推动相关技术的进步,并在实际工程问题中发挥重要作用。
2025-04-24 20:25:56 440KB
1