Transformer模型由Google在2017年的论文中提出,是一种新型的深度学习架构,特别适用于自然语言处理(NLP)任务。与传统的基于循环神经网络(RNN)的模型相比,Transformer利用自注意力(Self-Attention)机制,这使得它在处理序列数据时能够并行化,大大提高了训练效率。自注意力机制允许模型在处理每一个词时,同时考虑句子中所有其他词的信息,这对于理解上下文关联尤其重要。 Transformer模型的架构主要包括编码器(Encoder)和解码器(Decoder)两大部分。编码器由多层堆叠而成,每一层又包含了两个子层:自注意力层和位置前馈神经网络(Position-wise Feed Forward Network,简称FFN)。自注意力层通过权重参数来处理输入序列,使得每个词都可以与句子中的其他词进行交互。位置前馈网络则对自注意力层的输出进行进一步的加工。解码器同样由多层堆叠而成,每一层也包含一个自注意力子层、一个位置前馈神经网络以及一个编码器-解码器注意力层。编码器-解码器注意力层用于帮助解码器关注与当前翻译词相关联的输入序列部分。 在Transformer模型中,词嵌入(Word Embedding)是将词汇转换为向量的第一步。词嵌入向量维度设定为512,这一过程仅在最底层编码器中执行,而后续各层则接收上一层的输出作为输入。整个序列数据会依次经过编码器中的自注意力层和前馈网络,编码后的数据最终由解码器生成目标语言序列。 自注意力机制是Transformer模型的核心,它赋予模型处理序列时理解词语之间关系的能力。举例来说,在翻译句子时,自注意力机制可以帮助模型明确“it”这个代词指代的是“animal”还是“street”。这种机制允许模型在处理每个词时,不仅考虑到当前词的信息,还可以整合句子中所有其他词的信息。 Transformer模型的提出,推动了NLP领域的发展,特别是在机器翻译、文本摘要、问答系统等领域中广泛应用。此外,它对后来的多种模型,如BERT、GPT系列,产生了深远的影响,这些模型都基于Transformer架构,并在自注意力机制上做了进一步的改进和优化。 由于Transformer模型能够高效并行化处理序列数据,它在处理长文本时显示出传统RNN难以比拟的优越性。模型结构的灵活性和可扩展性也允许研究人员根据不同任务需求进行适当的调整和优化。 尽管Transformer模型在多个方面都展现出强大的性能,但同样也面临一些挑战,如对长距离依赖关系建模的能力、计算资源的需求以及在小规模数据集上的泛化能力等。未来的研究会继续探索这些问题,以推动Transformer模型及相关技术的进一步发展和完善。
2025-11-18 19:17:06 2.01MB transformer
1
在当今的信息时代,语音识别技术已经成为了人机交互领域的重要组成部分。随着技术的不断进步,语音识别的准确性和效率得到了显著提升。wenet语音识别框架作为一个强大的开源工具,它的出现极大地推动了语音识别技术的发展。wenet支持多种语音识别模型,并且易于扩展和定制,能够适应不同的应用场景。 微调(Fine-tuning)是机器学习中的一个常用技术,它指的是在模型预训练的基础上,使用特定任务的数据集对模型进行进一步的优化。这种技术特别适用于在有限的标注数据上训练高性能的模型。微调的关键在于它能够在保持模型预训练时获得的泛化能力的同时,通过特定任务的数据进一步提高模型在特定领域的表现。 FireRedASR-AED是一个专门针对自动语音识别(Automatic Speech Recognition, ASR)的算法模型。它采用端到端(End-to-End, E2E)的训练方式,这种方式在处理语音识别任务时无需进行复杂的特征工程,可以直接从原始音频中提取特征,并将音频信号转换为文本。端到端模型的出现简化了语音识别流程,提高了系统的整体性能。 LLM(Language Model)模型在语音识别系统中扮演了重要的角色,它用于评估一个词序列出现的可能性,帮助ASR系统在多种可能的词序列中选择最符合上下文的那一个。一个强大的语言模型能够显著提升识别的准确性,尤其是在处理语言中的歧义和不确定性时。 综合上述技术,wenet语音识别框架在微调FireRedASR-AED与LLM模型方面提供了一个强大的平台。开发者可以利用wenet框架的灵活性,结合FireRedASR-AED的端到端识别能力和LLM的语言建模能力,开发出适应特定应用需求的语音识别系统。这样不仅可以提高语音识别的准确度,还可以加快处理速度,降低系统的延迟。 通过微调和优化,开发者可以使得语音识别系统在特定领域,如医疗、法律或教育等行业中更加准确和高效。例如,在医疗领域,一个精确的语音识别系统可以帮助医生快速准确地将患者的口述病历转换成文本记录;在法律领域,它可以辅助速录员更高效地完成口供记录工作;在教育领域,它可以作为辅助工具,帮助学生进行语言学习和发音练习。 此外,语音识别技术的发展还推动了其他相关领域技术的进步,如自然语言处理(NLP)、人机交互、智能助理等。这些技术的综合应用,为构建智能社会提供了坚实的技术基础。 wenet语音识别框架结合FireRedASR-AED与LLM模型的微调技术,为语音识别领域带来了一次重大的技术革新。它不仅提高了语音识别的准确率和效率,还为开发者提供了更多的定制化可能,从而满足不同行业和场景的特定需求。
2025-11-18 17:45:45 1.68MB
1
本文详细介绍了连续体机器人的正逆向运动学模型,重点讲解了DH参数法和雅可比矩阵的应用。首先概述了传统机器人中使用的DH参数法和雅可比矩阵,然后详细阐述了如何利用DH参数法解决机器人的正向运动学问题,以及如何利用雅可比矩阵的伪逆迭代解决逆向运动学问题。文章还讨论了连续体机器人的建模思路,指出虽然连续体机器人没有固定关节,但可以通过拟合虚拟关节来应用类似的建模方法。最后,文章提供了具体的DH参数矩阵和雅可比矩阵的构建方法,并预告了下一章节将应用DH参数法对连续体机器人的正向运动进行建模。 连续体机器人运动学模型的构建是机器人学领域内的一个研究热点,尤其在处理无固定关节的机器人结构时显得尤为重要。运动学模型主要涉及机器人的运动描述和分析,包括正向运动学和逆向运动学两个方面。正向运动学指的是在已知机器人各个关节变量的情况下,计算机器人末端执行器的位置和姿态;逆向运动学则是在已知机器人末端执行器位置和姿态的前提下,求解各个关节变量的值。 DH参数法,即Denavit-Hartenberg参数法,是一种广泛应用于机器人运动学建模的方法。它通过引入四个参数——连杆偏距、连杆扭角、连杆长度和关节转角——来描述相邻两个关节轴之间的关系。对于连续体机器人而言,尽管其结构柔性且没有传统意义上的固定关节,但是通过设定虚拟关节,可以将连续体离散化处理,使得DH参数法同样适用。 雅可比矩阵是运动学中描述机器人末端速度和关节速度之间关系的矩阵,它在连续体机器人的逆向运动学问题中扮演着至关重要的角色。逆向运动学的求解通常需要通过迭代算法来实现,雅可比矩阵的伪逆提供了一种有效的解决方案,它能够提供关节速度与末端执行器速度之间的映射关系。 连续体机器人的建模过程比较复杂,因为其结构的连续性给传统建模方法带来了挑战。文章指出,连续体机器人建模的关键在于如何合理地定义虚拟关节以及如何通过DH参数法来表示这些虚拟关节之间的相对运动关系。 在文章的作者介绍了如何构建具体的DH参数矩阵和雅可比矩阵。通过设定连续体机器人各段的虚拟关节,可以使用DH参数法来构建出一个离散化的模型。接着,根据这些虚拟关节和它们的运动关系,可以推导出雅可比矩阵。雅可比矩阵的构建是理解机器人运动学和进行运动控制的基础。文章还预告了下一章节将介绍如何利用DH参数法对连续体机器人的正向运动进行建模。 文章的讨论并不停留在理论层面,它还提供了实际构建这些模型的具体方法,这对于机器人工程师在设计和控制连续体机器人时具有重要的参考价值。通过这些模型,工程师能够更加精确地控制机器人的运动,实现复杂的任务。 连续体机器人的运动学模型构建是一个将理论与实践结合的过程,其中DH参数法和雅可比矩阵是解决连续体机器人正逆向运动学问题的关键工具。通过合理的建模方法和算法迭代,连续体机器人可以在无固定关节的条件下实现精准的运动控制。
1
基于ANSYS与Simpack的刚柔耦合分析:绿色柔性体应力与疲劳的全面解析——视频与模型教程指南,基于ANSYS与Simpack的复杂刚柔耦合系统应力与疲劳分析:绿色柔性体的应用与视频模型教程,基于ansys与simpack的刚柔耦合分析,应力分析,疲劳分析。 绿色为柔性体。 视频以及模型教程。 ,ansys; simpack; 刚柔耦合分析; 应力分析; 疲劳分析; 绿色柔性体; 视频教程; 模型教程。,基于ANSYS与Simpack的刚柔耦合、应力与疲劳分析视频教程 在现代工程设计与分析领域中,刚柔耦合分析是一种重要的技术,它允许工程师在同一个仿真模型中同时考虑刚体和柔性体的特性。这种分析方法在航空航天、汽车、机械制造等行业中尤为关键,因为它能够更准确地模拟实际工作条件下的动态响应,提高设计的准确性和可靠性。 ANSYS和Simpack是两个广泛应用于工程仿真领域的软件工具。ANSYS以其强大的有限元分析(FEA)功能著称,能够处理复杂的结构应力、热分析等问题;而Simpack则专注于多体动力学分析,特别是在处理复杂机械系统的运动学和动力学仿真方面有独到之处。将这两种软件结合起来,能够形成一个综合刚柔耦合分析的强大平台。 在进行刚柔耦合分析时,通常会遇到一个关键问题——柔性体的建模。柔性体可以理解为那些在受力时会发生变形的物体,如悬架系统中的弹簧、汽车车身等。传统的刚性体模型无法准确反映这些部件在受到外力时的变形情况,而将它们视为柔性体,则可以模拟出实际的变形和应力分布,从而对产品的疲劳寿命、可靠性等关键性能进行评估。 绿色柔性体的概念在此背景下应运而生,其主要目标是通过优化设计和材料选择,减少产品在使用过程中的能耗和对环境的影响。在进行刚柔耦合分析时,绿色柔性体的应力和疲劳分析尤为重要,因为它们直接关系到产品的耐久性和环境友好性。 视频和模型教程作为辅助工具,在理解和掌握刚柔耦合分析方面发挥着重要的作用。这些教程通常会提供详细的步骤说明、实例演示和问题解决方案,帮助工程师快速掌握软件的使用技巧,提高工作效率。通过视频和模型教程,工程师可以在实际操作之前获得直观的理解,这对于复杂仿真分析尤为重要。 基于ANSYS与Simpack的刚柔耦合分析是一种高度复杂且有效的仿真手段,它结合了两种软件的优势,能够在同一仿真环境下完成从刚体到柔性体的全面分析。而通过绿色柔性体的概念,我们不仅能提升产品的性能,还能在设计之初就考虑到环境影响,为实现可持续发展贡献力量。视频和模型教程的存在,则为这一技术的学习和应用提供了便捷途径。
2025-11-18 11:15:43 988KB safari
1
资源下载链接为: https://pan.quark.cn/s/a81aa55f09e2 借助深度学习模型识别验证码、Python 爬虫库管理会话及简易 API,实现知乎数据爬取(最新、最全版本!打开链接下载即可用!) 在当前信息化社会,数据挖掘与分析已成为研究和商业决策的重要基础。知乎作为中国最大的知识社区,其庞大的用户群体和丰富的内容成为数据挖掘的宝贵资源。然而,知乎网站为了保护用户数据和防止爬虫滥用,采取了一系列反爬虫措施,其中最为常见的是验证码机制。传统的验证码识别方法主要依赖于模板匹配和特征提取技术,这些方法在面对复杂多变的验证码时往往效果不佳。 深度学习技术的出现为验证码识别提供了新的解决方案。通过构建深度神经网络模型,可以实现验证码的自动识别,有效提高识别准确率和效率。在本项目中,我们首先利用深度学习模型对知乎平台上的各种验证码进行识别训练,建立一个高效准确的验证码识别系统。这个系统能够自动识别并输入验证码,从而为后续的数据爬取工作铺平道路。 在实现知乎数据爬取的过程中,Python爬虫库发挥着重要作用。Python作为一门广泛应用于数据科学和网络开发的语言,拥有众多功能强大的爬虫库,如Requests、BeautifulSoup、Scrapy等。它们可以模拟浏览器行为,管理网站会话,处理Cookies、Headers等复杂网络请求,并能够更加高效地抓取网页数据。 然而,爬虫的使用往往伴随着较高的网络请求频率和数据量,容易触发网站的反爬机制。为此,我们需要合理设计爬虫策略,如设置合理的请求间隔,使用代理IP进行请求,避免对服务器造成过大压力,同时遵守网站的robots.txt文件规定,以合法合规的方式进行数据爬取。 此外,为了进一步提高数据爬取的便利性,本项目还设计了一个简易的API接口。通过这个API,用户可以更简单地调用爬虫功能,而无需深入了解爬虫实现的复杂细节。这不仅降低了数据爬取的技术门槛,而且使得数据的调用更加灵活方便。 在实现上述功能的过程中,本项目需要考虑多方面因素,包括爬虫的效率、稳定性和隐蔽性,以及API的设计规范和用户体验。最终,我们将所有功能整合在一个Python脚本文件中,通过简洁明了的代码,实现了一个从验证码识别到数据爬取再到数据调用的完整流程。 通过深度学习模型的验证码识别、Python爬虫库的高效会话管理,以及简易API的构建,本项目为知乎数据爬取提供了一个全面、便捷和高效的技术方案。这一方案不仅能够帮助研究者和开发者快速获取知乎上的高质量数据,同时也展示了深度学习与网络爬虫技术结合的强大潜力。
2025-11-18 00:10:26 462B 深度学习 Python爬虫
1
基于MATLAB仿真的八索并联绳索机器人运动学及动力学模型:点滑轮摆动与俯仰运动及力分配策略研究,八索并联绳索机器人仿真matlab模型,带出绳点滑轮摆动与俯仰,是运动学模型 另外还有正运动学模型,力分配以及动力学模型,可以改 ,核心关键词:八索并联绳索机器人仿真; MATLAB模型; 绳点滑轮摆动; 俯仰运动学模型; 正运动学模型; 力分配; 动力学模型; 可改。,MATLAB仿真模型:八索并联机器人运动学与动力学分析 MATLAB仿真技术在机器人领域发挥着重要作用,尤其是在设计和分析复杂的并联机器人系统时。本文介绍了一种基于MATLAB仿真平台的八索并联绳索机器人模型研究,涉及了运动学与动力学的深入分析。八索并联机器人是一种采用八根绳索进行驱动的并联机构,它具有较高的灵活性和可控性,适用于各种复杂任务的执行,如载荷运输、精密定位等。在本研究中,作者构建了详细的运动学模型和动力学模型,这些模型能够准确模拟机器人在执行任务时的状态变化。 研究内容主要包括点滑轮摆动和俯仰运动两个方面。点滑轮摆动是指绳索与滑轮之间的相对运动,这种运动对机器人的运动精度和稳定性有着直接的影响。俯仰运动则是指机器人在垂直方向上的旋转运动,这对于机器人的定位精度和操作范围至关重要。在这些模型的基础上,研究者还探讨了力分配策略,即如何根据机器人各部件的受力情况合理分配拉力,以保证机器人的高效和稳定运行。 正运动学模型是研究机器人各部件的位置和姿态如何随输入参数变化的模型,它在机器人路径规划和运动控制中发挥着核心作用。通过对正运动学模型的分析,可以确定在给定各个驱动器输入时,机器人末端执行器的位置和姿态,这为精确控制机器人提供了可能。同时,文章还强调了动力学模型的重要性,它是研究机器人各部件受到的力和力矩如何随时间变化的模型,对于预测机器人在执行任务中的动态行为和进行动力学优化至关重要。 研究者还指出,所提出的MATLAB仿真模型具有高度的可改性。这意味着用户可以根据自身需求和实验条件对模型进行调整,从而更好地适应特定应用场景。例如,可以通过修改参数来模拟不同重量的载荷、不同绳索的长度和刚度,甚至改变机器人的结构布局等。这种灵活性对于机器人的设计、测试和优化过程非常有帮助。 八索并联绳索机器人及其MATLAB仿真模型的研究,不仅展示了机器人技术在动态模拟和控制领域的应用潜力,还为机器人设计和应用提供了宝贵的理论和实践指导。通过对运动学和动力学模型的深入研究,可以有效提高机器人的性能,使其在工业生产和科学研究中发挥更大的作用。
2025-11-17 22:14:25 1.46MB kind
1
内容概要:本文详细介绍了非线性电液伺服系统的模型预测控制(MPC)。首先概述了非线性电液伺服系统的特点及其广泛应用领域,接着阐述了MPC作为先进控制策略的优势,如处理约束条件和适应时变系统的能力。然后重点讲解了为实现MPC控制所需建立的数学模型,包括系统的结构、参数和输入输出关系。此外,还提供了详细的PDF教程和MATLAB Simulink源程序,涵盖MPC基本原理、算法实现及应用案例。最后强调了S函数编写对于MPC控制的重要性,涉及系统的状态方程、输出方程和约束条件等内容。 适合人群:从事自动化控制系统研究与开发的技术人员,尤其是对非线性电液伺服系统感兴趣的工程师。 使用场景及目标:①深入理解非线性电液伺服系统的特性和应用场景;②掌握MPC控制理论及其具体实现方法;③学会使用MATLAB Simulink进行仿真建模,并能够编写S函数以实现MPC控制。 阅读建议:读者可以通过阅读提供的PDF教程,结合MATLAB Simulink源程序进行实践操作,加深对MPC控制的理解。同时,在学习过程中遇到困难时,可以参考文中提到的相关知识点,逐步解决遇到的问题。
2025-11-17 19:48:44 731KB
1
SWaT数据集是一个从安全水处理(Secure Water Treatment)测试平台收集的传感器和执行器测量数据集,广泛应用于工业控制系统(ICS)安全研究领域。它包含正常运行数据和网络攻击场景数据,模拟真实世界工业控制系统入侵,为研究提供对比样本。 该数据集是时间序列数据,记录了水处理过程中传感器和执行器在不同时间点的状态变化。传感器测量水流量、压力等参数,执行器控制阀门开闭、泵运行等操作。这些数据随时间变化,能反映设备运行情况,帮助分析和检测异常。 SWaT数据集作为基准数据集,为研究人员提供统一标准,方便比较不同方法和模型在处理工业控制系统安全问题时的效果。它适用于异常检测、入侵检测、时间序列分类和ICS故障检测等任务。例如,可基于正常和攻击数据训练分类模型,将新数据分类为正常或攻击状态,提前发现潜在安全威胁。 总之,SWaT数据集为工业控制系统安全研究提供了宝贵资源,助力开发和测试检测算法,提升关键基础设施安全防护能力。
2025-11-17 16:38:48 101.06MB 机器学习 预测模型
1
包含了openpose用到的pose、face、hand 所有用到的模型,已经按照实际所需目录结构存放。 openpose/models/ ├── pose/ │ ├── body_25/ │ │ ├── pose_deploy.prototxt │ │ └── pose_iter_584000.caffemodel │ ├── coco/ │ │ ├── pose_deploy_linevec.prototxt │ │ └── pose_iter_440000.caffemodel │ └── mpi/ │ ├── pose_deploy_linevec_faster_4_stages.prototxt │ └── pose_iter_160000.caffemodel ├── hand/ │ ├── pose_deploy.prototxt │ └── pose_iter_102000.caffemod
2025-11-17 15:45:58 727.83MB openpose models caffe
1