realesr-general-x4v3.pth
2022-11-12 20:30:44 4.66MB realesr
1
RealESRGAN_x2plus_netD.pth
2022-11-12 20:30:43 16.77MB RealESRGAN
1
https://github.com/hysts/anime-face-detector
2022-11-10 12:22:09 235.04MB anime mmdet
1
https://github.com/hysts/anime-face-detector
2022-11-10 12:22:08 158.04MB mmdet anime
1
https://github.com/hysts/anime-face-detector
2022-11-10 12:22:07 37.52MB mmpose anime
1
ConvNext官方预训练模型(small版本)
2022-11-01 16:05:08 191.69MB convnext python 深度学习 人工智能
1
ConvNext官方预训练模型(base版本)
2022-11-01 12:04:58 419.54MB convnext 预训练模型 深度学习 transformer
1
mdnet_imagenet_vid.pth,可作为APFNet预训练权重
2022-10-29 22:04:59 16.91MB APFNet RGBT目标跟踪 预训练权重
1
开源视频增强项目EDVR 训练好的模型EDVR_Vimeo90K_SR_L Name convention EDVR_(training dataset)_(track name)_(model complexity) track name. There are four tracks in the NTIRE 2019 Challenges on Video Restoration and Enhancement: SR: super-resolution with a fixed downsampling kernel (MATLAB bicubic downsampling kernel is frequently used). Most of the previous video SR methods focus on this setting. SRblur: the inputs are also degraded with motion blur. deblur: standard deblurring (motion blur). deblurcomp: motion blur + video compression artifacts. model complexity L (Large): # of channels = 128, # of back residual blocks = 40. This setting is used in our competition submission. M (Moderate): # of channels = 64, # of back residual blocks = 10.
2022-10-29 14:45:57 79.01MB 深度学习 超分 EDVR
1
facebookresearch的supervision-by-registration项目所需的pytorch模型文件。
2022-10-26 20:59:46 127.56MB cpm vgg16 landmarks
1