经典的鲁棒控制电子书 有周克敏的鲁棒与最优控制,讲述Matlab在鲁棒中应用的Robust Control Design with MATLAB,还有一本A Course In Robust Control Theory -A Convex Approach
2022-05-26 21:29:43 9.55MB 鲁棒控制 电子书 pdf
1
有限时间自适应鲁棒控制
2022-05-22 18:44:23 280KB 研究论文
1
|划 4.20 斜棒稳定问题 条件是 11 M(s) 11 = 11 W(s)K(s)S(.,) IL~l (4. 52) 且.1=0 时的标称系统娃内部稳定的。 另一方面,如果将 ,1 (s) 的输出 w 作为标称系统的假想干扰输入 ,,1 (s) 的输入 z 看做是你称系统的 一个输出信号, ,丑I~ 么, M(s)- W(s)K(s)S(.,) (4. 53) 正是如图 4.21 所凉的等价系统由 w 至 z 的闭环传递雨数。因此,具有不确定性 的系统的鲁棒镇定问题.就等价于在 IL 范数的意义下,对标称系统〈图 4.21)减小 F扰 ω 至评价输 :1:\ z 的增益的问题。 例 4.6 考察如阁 4.22 所示的反馈系统降低灵敏度的设计问题.即对于给定 的标称被控对象 Po(s) , 求反馈控制器 K(s) ,使得闭环系统稳定.且 II Wμ)S(s) 11司 ~l (4.54) ' - i刽 4. 21 等价 F扰仰和i问题 |刽 4.22 灵敏度降低和系统鲁榨稳寇的等价性 由表 4. 1 可知,当存在如虚线所示的反111t摄动类型 1 时,该条件实际上是系统 轩栋稳定的充分必要条件。这表明标称系统的 H 性能指标设计问题.等价于系 统布在假想摄动 ,1 (s)时的岱棒镇定问题。 定理 4.3 在图 4. 23 所示的系统型.以下纣论成立: (1)当系统禽稳定报动.1.且满足 11 .1 11 、 <1 时 ,其鲁 棒稳定条件等价于使闭环系统 (G.K) 内部稳定,并{史 w 到立的标称闭环传递矩阵 F(G , K) 的 H 也数满 足 11 F(G , K) 11 ", ζ1 。 (2) 闭环系统(G.K) 内部稳定,且 11 F(G , K) 11. ~l, • 83 • -- '‘. l' u 罔 4.23 H 标称件能和1鲁榨 稳定的等价性
2022-05-19 20:46:42 39.49MB 鲁棒控制 电力系统
1
基于H∞混合灵敏度鲁棒控制方法设计了主从机械手的控制器。提出了实用的加权函数选择方法和一种控制器降阶方法。采用MATLAB鲁棒控制工具箱进行仿真实验,结果表明系统在受扰情况下,具有良好的鲁棒稳定性和跟踪性能。
2022-05-08 22:04:13 427KB 自然科学 论文
1
哈工大鲁棒控制作业[VEeGF5]
2022-05-08 08:35:46 49KB 哈工大
1
鲁棒控制 LMI的经典教科书 浙江大学 俞立教授主编
2022-05-04 21:42:02 5.47MB 控制 LMI
1
人工智能-机器学习-船舶舵翼舵鳍翼鳍智能鲁棒控制研究.pdf
2022-05-03 21:05:30 9.03MB 人工智能 机器学习 文档资料
大数据-算法-非线性动态系统的稳定性和鲁棒控制理.pdf
2022-05-03 19:09:56 6.42MB big data 算法 文档资料
从某种抽象的意义上来谈鲁棒性本身,而不局限于控制系统的鲁棒性。 首先,鲁棒性是一种性质,它应该与某种事物相关联。如控制系统、矩阵等。因而我们通常所说的控制系统的鲁棒性即是与控制系统相关的某种意义下的抗扰能力。 其次,鲁棒性所言及的对象并不是事物本身,而是事物的某种性质,如控制系统的稳定性、矩阵的可逆性或正定性等等。 因而通常的“控制系统的鲁棒性”这种说法并不确切。是一种很笼统的说法。如若确切地表述,则需指明“某事物的某种性质”的鲁棒性,如控制系统的稳定性的鲁棒性,简称控制系统的稳定鲁棒性;控制系统的某种性能的鲁棒性,简称控制系统的性能鲁棒性。
2022-05-01 16:39:08 2.2MB 控制 鲁棒
1
我们总是假设已经知道了受控对象的模型,但由于实际中存在种种不确定因素,如: 参数变化; 未建模动态特性; 平衡点的变化; 传感器噪声; 不可预测的干扰输入; 所以我们所建立的对象模型只能是实际物理系统的不精确的表示。鲁棒系统设计的目标就是要在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。如果模型的变化和模型的不精确不影响系统的稳定性和其它动态性能,这样的系统我们称它为鲁棒控制系统。
2022-05-01 16:38:08 770KB 鲁棒控制
1