糖尿病数据diabetes.csv,深度学习可用,学习之用 获取地址:https://gitee.com/xxxstar/diabetes/blob/master/DATA/diabetes.csv#
2025-10-12 12:26:30 9KB 数据集
1
免费的东东,官网可以下到,以防网断掉,或者大家找不到,传一份上来。包括100k和1m两个,另外10m的太大,不传了,想要的自己去下吧
2025-10-12 12:26:00 10.4MB movieLens DataSet 1m,100k
1
标题中的“cifar10、cifar100”指的是两个广泛用于计算机视觉研究的数据。CIFAR-10和CIFAR-100是由Alex Krizhevsky创建的小型彩色图像数据,是许多机器学习和深度学习算法的基准测试之一。 CIFAR-10数据包含60,000个32x32像素的彩色图像,分为10个类别,每个类别有6,000张图像。这10个类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、船和卡车。其中50,000张图像用于训练,10,000张用于测试。这些图像在视觉上具有挑战性,因为它们包含各种各样的视图、姿势和光照条件。 CIFAR-100数据与CIFAR-10类似,但包含100个类别,每个类别有600张图像。这些类别分为20个超级类别,每个超级类别包含5个相关的子类别。同样,CIFAR-100也分为50,000张训练图像和10,000张测试图像。 描述中提到的“python版本数据打包下载”意味着提供的压缩包包含了Python语言可以使用的数据格式。这意味着数据已经被预处理为Python友好的格式,可能包含了numpy数组或Pandas DataFrame,方便数据加载和处理。此外,“更多版本下载(matlab、二进制)”表示还有其他版本的数据,适用于MATLAB环境或原始的二进制格式。这些不同格式满足了不同编程语言和应用场景的需求。 “数据详细介绍参考资源中的readme.html”表明压缩包内有一个readme.html文件,该文件通常会提供关于数据的详细信息,如数据的结构、如何加载和使用数据、数据预处理方法以及可能的限制或注意事项。 标签中的“数据下载”和“计算机视觉”明确了这个资源是用于计算机视觉研究的数据,而“分类算法”则提示这个数据常被用来训练和评估各种图像分类模型,如支持向量机(SVM)、随机森林(RF)、卷积神经网络(CNN)等。 这个压缩包提供了CIFAR-10和CIFAR-100数据的Python版本,适合进行计算机视觉领域的图像分类任务。它还提供了其他格式的下载选项,以及一个readme.html文件来详细解释数据的使用。这个资源对于那些希望在小规模彩色图像识别上测试和开发新算法的研究者来说非常宝贵。
2025-10-12 12:21:24 323.77MB 数据集下载 计算机视觉 分类算法
1
数据是一个专注于肌肉骨骼放射影像的骨折分类、定位和分割的数据,由 Iftekharul Abedeen 等研究人员于 2023 年创建。该数据包含 4,083 张 X 射线图像,其中 717 张为骨折图像,涵盖了手、腿、髋关节和肩部区域。数据提供了丰富的标注信息,支持 COCO、VGG、YOLO 和 Pascal VOC 等多种格式,适用于多种深度学习任务。数据的构建基于从孟加拉国三家主要医院收的 14,068 张 X 射线图像。为保护患者隐私,所有 DICOM 格式的图像均被转换为 JPG 格式,并去除了敏感的元数据信息。经过筛选,最终保留了 4,083 张与手、腿、髋关节和肩部相关的图像。标注工作由两位放射科专家和一位骨科医生完成,确保了标注的准确性和可靠性。数据特点 丰富的标注信息:数据不仅提供了骨折的分类标注,还包含了详细的分割掩码、边界框和区域信息,支持多种深度学习任务。 多样的图像视角:数据涵盖了前视、侧视和斜视等多种视角的图像,为模型训练提供了丰富的数据维度。 多格式支持:标注信息以 COCO、VGG、YOLO 和 Pascal VOC 等多种格式提供,方便不同研究者根据需求选择合适的格式。FracAtlas 数据广泛应用于医学影像分析领域,特别是在骨折检测、分类和分割任务中。它可以用于开发自动检测骨折的深度学习模型,帮助医生快速准确地诊断骨折类型和位置。此外,数据还支持对骨骼结构的精确分割,为医学研究和临床应用提供了重要的支持。FracAtlas 数据是一个高质量的医学影像资源,为骨折检测和诊断领域的研究提供了重要的支持。
2025-10-11 17:37:45 322.72MB 计算机视觉 机器学习 图像处理
1
内容概要:本文介绍了全国水文站河川径流大数据(1980-2023),涵盖日、月、年三种尺度的径流数据及其收费标准。数据不仅有助于研究气候变化、水资源管理和生态环境保护,还提供了Matlab和Python绘图代码支持,帮助用户更好地理解和分析数据。此外,文中提到已成功帮助100多位用户解决问题,强调了数据的可靠性和服务的专业性。 适合人群:从事水文学、气象学、环境科学等领域研究的科研人员、高校师生及相关从业人员。 使用场景及目标:①用于科学研究,如气候变化、水资源管理、生态环境保护等领域的数据分析;②用于教学展示,帮助学生理解水文数据的实际应用场景;③用于商业决策,为企业提供可靠的水文数据支持。 其他说明:文中详细列出了不同尺度径流数据的具体收费标准,并提到了额外的服务项目,如站点信息查找和绘图代码支持。同时,文中呼吁更多人参与合作,共同推动水资源管理和环境保护的发展。
2025-10-11 17:35:20 2.21MB
1
数据名称:课堂行为检测数据(基于YOLOv8的目标检测) 数据描述: 本数据面向基于 YOLOv8 的课堂行为目标检测任务,旨在实现对学生在教室内典型行为(如举手、睡觉、阅读、书写、使用手机、交谈、转头等)的精确识别与定位。数据采自真实教学场景,涵盖多个时间段、角度与环境条件,具备良好的多样性、代表性和实际应用价值,适用于智慧教育、课堂行为分析、教学管理等多个场景。 数据特点: 标注类型:采用YOLO格式,提供边界框坐标与行为类别标注; 行为类别:覆盖典型课堂行为(支持自定义扩展类别); 图像数量:训练-3192张; 分辨率:统一/多种分辨率(如有特殊说明可补充); 适用模型:适配YOLOv8及主流目标检测模型; 应用场景:智慧教室、教学管理、课堂行为分析、人机交互等。 应用价值: 该数据可广泛应用于智慧教育领域,有助于构建基于计算机视觉的课堂行为分析系统,提升教学过程的可视化管理水平,实现课堂纪律自动评估、学生参与度分析等功能,助力教育信息化发展。
2025-10-11 17:17:41 265.08MB 目标检测 yolo 课堂行为
1
2024年阿里云在大模型领域取得了一系列突破,并在多个行业实现了典型示范应用案例。这些应用案例展示了大模型在提高效率、优化工作流程、实现智能决策等方面的应用价值。大模型的发展推动了人工智能技术的进步,为各行各业带来了创新的可能性,特别是在医疗、教育、交通、工业制造等领域中,大模型的示范应用案例尤为显著。 在医疗领域,大模型通过整合和分析海量医疗数据,助力医生进行更精确的疾病诊断和治疗方案的制定。例如,在肿瘤筛查、疾病预测等方面,大模型能够辅助医生发现以往难以察觉的细微病变,大大提高了诊断的准确性和治疗的有效性。 教育行业方面,大模型在个性化教学和智能辅导中发挥了重要作用。通过分析学生的学习习惯和能力水平,大模型能够为学生提供定制化的学习计划和建议,甚至能够模拟教师的辅导行为,帮助学生更好地掌握知识。 交通领域中,大模型的引入使得智能交通系统更加智能高效。通过对实时交通数据的分析,大模型能够优化交通信号灯的调度,减少交通拥堵,提高道路使用效率。此外,大模型还能够预测交通流量,提前预警可能的交通状况,为城市交通管理提供有力支持。 在工业制造领域,大模型的应用正在改变传统的生产模式。通过实时监测生产线的数据,大模型可以预测设备可能出现的故障,提前进行维护,保证生产的连续性和安全性。同时,大模型还能协助提高产品质量,通过分析生产过程中的数据,找出影响产品质量的关键因素并进行优化。 在推动这些应用案例的同时,阿里云也面临一系列挑战。例如,如何确保大模型的训练数据真实可靠,避免偏见和错误;如何保护用户隐私和数据安全;如何实现大模型在不同领域的适应性和泛化能力等。阿里云在解决这些问题的过程中,积累了丰富的经验和技术,为大模型的进一步发展奠定了坚实的基础。 此外,大模型的发展也引发了社会对人工智能伦理和法律问题的关注。如何在技术创新和伦理约束之间找到平衡点,是大模型进一步推广和应用中必须正视的课题。阿里云在这方面也积极探索,与社会各界合作,推动人工智能技术的健康发展。 2024年阿里云通过一系列大模型的示范应用案例,在促进技术进步的同时,也为社会带来了广泛的应用价值和深刻的影响。未来,随着技术的不断成熟和社会问题的解决,大模型将在更多领域展现出巨大的潜力和应用前景。
2025-10-11 14:04:28 39.27MB AI
1
Reddit Depression Dataset(RDS)是一个包含约9000名自报被诊断为抑郁症的Reddit用户的帖子数据,以及大约107000名对照用户的帖子。该数据中,被诊断用户的帖子已经去除了所有在心理健康相关的subreddits中发表的帖子,或者包含与抑郁症相关的关键词的帖子;而对照用户的帖子则在选取过程中不包含这类帖子。 这个数据的构建细节可以在EMNLP 2017的论文《Depression and Self-Harm Risk Assessment in Online Forums》的第3.1节中找到,或者在数据网站上查看。RDS数据的目的是为了支持在线论坛中抑郁症和自残风险评估的研究,它提供了一个丰富的资源,用于开发和测试用于识别抑郁症状的算法。 RDS数据的统计数据显示,经过处理后,有9210名被诊断用户被分为训练、验证和测试,以及相应的匹配对照用户。每个用户发表的帖子数量和每篇帖子的长度都有很大的差异。这个数据为研究人员提供了一个宝贵的资源,用于分析抑郁症患者在社交媒体上的行为模式和语言使用习惯,以及开发用于识别抑郁症状的工具。
2025-10-11 11:30:10 431.13MB 机器学习 预测模型
1
小麦病害检测数据VOC+YOLO格式1882张4类别.docx
2025-10-10 15:39:34 2.64MB 数据集
1
根据提供的信息,这份数据主要是用于训练智能监控和智能安防系统中的目标检测算法,特别是YOLO(You Only Look Once)算法。YOLO是一种流行的目标检测算法,它可以在视频流或图像中快速准确地识别出多个对象。该数据包含2000张图片,这些图片都有一个共同的特点,即在其中非机动车的驾驶员没有佩戴安全帽。 为了进行YOLO训练,数据需要经过严格的标注过程,其中包括对每张图片中的非机动车驾驶员没有戴安全帽的情况进行标注。标注通常会指出非机动车的位置、驾驶员的位置以及是否佩戴安全帽等信息。这样的标注使得YOLO算法能够学习到在各种场景下,如何识别非机动车驾驶员是否佩戴安全帽。 数据中的图片可能涵盖了多种环境和光照条件,确保了训练模型的泛化能力。例如,可能包括了不同的天气状况、不同的时间段、不同背景下的图片等。这样可以训练出一个鲁棒性强的模型,无论在什么情况下都能准确地检测出非机动车驾驶员是否佩戴安全帽。 对于智能监控和智能安防来说,这样的数据是非常重要的。通过检测非机动车驾驶员是否佩戴安全帽,可以及时发现安全隐患,并采取相应的预防措施。例如,在城市交通监控中,及时地识别出未戴安全帽的非机动车驾驶员,相关管理部门可以及时地进行警告或教育,以减少交通事故的发生。 此外,这份数据还具有广泛的应用场景,不仅限于交通监控,还可以用于其他需要检测个人防护装备穿戴情况的领域。例如,在工厂的监控系统中,可以利用此数据训练模型来监控工人是否佩戴了安全帽,从而提高生产安全。 这份数据是针对非机动车安全帽佩戴情况的YOLO训练专用,它对于提高智能监控系统的安全检测能力具有重要的实际意义。通过对这些图片数据的学习,YOLO算法可以更有效地用于实时监控系统,提高安全监管的效率和效果。
2025-10-10 14:11:42 467.49MB
1