Matlab实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测(完整源码和数据) 命令窗口输出MAE、MAPE、MSE、R2、MSE等指标。 优化学习率、隐藏层节点数、正则化系数。
2023-04-03 22:23:22 417KB matlab 网络 lstm 回归
空气环境问题越发成为人们关注的焦点.除了工厂排放的各种废气,私家车的普及都导致了当前令人担忧的空气环境状况.国家相关部门也开始加大对空气环境的治理,提出了环境质量网格化监测的相关政策.在此背景下,市场涌现出很多微型监测仪器,但由于自身内部的传感器精准度不够,存在数据偏差的问题.为了解决这一问题,本文通过利用神经网络技术中的长短期记忆网络(Long Short-Term Memory,LSTM)模型结合半监督学习方法,达到提高监测数据的精准度的目的.通过与其它模型进行对比分析,该方法达到了一定的效果.
1
针对网络入侵检测准确率偏低而误报率偏高的问题,提出一种融合卷积神经网络(CNN)与双向长短期记忆( BILSTM)网络的网络入侵检测方法。对 Kddcup99数据集进行预处理,并分别使用CNN模型、 BILSTM模型提取局部特征和长距离依赖特征,通过注意力机制计算特征的重要性,利用 softmax分类器获得最终的分类结果实验结果表明,与基于CNN和基于LSTM的方法相比,该方法的网络入侵检测效果较好,其准确率可提高至95.0%,误检率可降低至5.1%。
2023-03-06 19:31:28 2.91MB 神经网络
1
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
MATLAB实现GWO-LSTM灰狼算法优化长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
MATLAB实现CNN-BiLSTM卷积双向长短期记忆网络多变量时序预测, 数据为多变量时间序列数据,多输入单输出,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上,运行主程序即可。
灰狼算法优化长短期记忆网络(GWO-LSTM)的多输入单输出回归预测 (Matlab完整程序和数据) 运行版本2018及以上 优化参数为学习率,隐藏层节点个数,正则化参数Matlab代码,多个评价指标。
基于SSA-LSTM麻雀算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上 基于SSA-LSTM麻雀算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上 基于SSA-LSTM麻雀算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上
基于GWO-LSTM灰狼算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上 基于GWO-LSTM灰狼算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上 基于GWO-LSTM灰狼算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上
1.文件含所有代码以及保存数据,代码含有部分注释。 2.时间序列预测,验证集评价指标为rmse、MAE、MAPE、R2计算值 3.本文的运行效果如下,不同的案例数据,不同优化参数效果是不一样,有问题提供免费咨询和售后服务。 4.使用版本为matlab2020a,低于该版本的打开代码会出现乱码,属于正常现象,私聊会进行解决,高于此版本不会出现问题。 5.不同电脑、不同版本的运算结果会出现不同,因为采取随机算子。 %% LSTM结构参数 options = trainingOptions('adam', ... % adam优化算法 自适应学习率 'MaxEpochs',500,...% 最大迭代次数 'MiniBatchSize',10, ...%最小批处理数量 'GradientThreshold',1, ...%防止梯度爆炸 'InitialLearnRate',0.005, ...% 初始学习率 'LearnRateSchedule','piecewise', ... 'LearnRateDropPeriod',125, ...%125次后学习率下降
1