基于二阶自抗扰ADRC和MPC的路径跟踪控制,使用ADRC对前轮转角进行补偿,对车辆的不确定性和外界干扰具有一定抗干扰性,有参考lunwen,Carsim版本为2019,Matlab版本为2021 ,基于二阶自抗扰ADRC; MPC路径跟踪控制; 车辆不确定性抗干扰性; 外界干扰补偿; 参考lunwen; Carsim 2019版本; Matlab 2021版本,基于二阶自抗扰ADRC与MPC的车辆路径跟踪控制研究 在现代汽车电子控制系统中,路径跟踪控制是实现车辆自动驾驶的关键技术之一。随着自动驾驶技术的不断发展,对车辆路径跟踪控制系统的性能要求也愈来愈高,尤其是在面对车辆自身不确定性和复杂多变的外部环境时,如何确保车辆能够准确、稳定地跟踪预定路径成为了一项重要课题。为了提高车辆在真实道路条件下的行驶稳定性和安全性能,研究者们开始探索将二阶自抗扰控制(ADRC)与模型预测控制(MPC)相结合的先进控制策略。 自抗扰控制(ADRC)是一种基于对象动态模型的控制技术,它通过实时估计和补偿系统的不确定性和外部干扰来提高系统的鲁棒性。在路径跟踪控制中,ADRC可以有效地补偿由车辆的动态特性不一致以及复杂外部环境引起的不确定性,从而提高车辆路径跟踪的精确性和稳定性。 模型预测控制(MPC)是一种基于优化控制理论的先进控制策略,它通过预测未来一段时间内系统的动态行为,然后在线求解最优控制序列以实现对系统未来行为的指导。MPC具有良好的处理约束能力和优化多目标问题的能力,适用于处理复杂的路径跟踪任务。 将ADRC和MPC相结合,可以充分发挥两者的优势。ADRC的强鲁棒性能可以处理车辆在复杂环境下的不确定性,而MPC的预测和优化能力则有助于实现对车辆未来路径的精确控制。这种结合使用的方法不仅能够保证车辆在受到不确定性和外部干扰时仍能保持稳定跟踪预定路径,而且还可以在满足各种约束条件的前提下优化车辆的行驶性能。 为了验证和分析所提出的控制策略的实际效果,研究中使用了Carsim软件进行车辆模型的搭建和仿真实验。Carsim作为一个被广泛认可的车辆动力学仿真平台,能够提供精确和高保真的车辆模型和环境模拟。同时,实验中的控制算法实现则是通过Matlab软件及其相应的控制系统工具箱来完成的。Matlab作为一个功能强大的数学计算和仿真平台,为控制算法的开发和测试提供了便利。 在所提供的压缩包文件中,包含了多个与基于二阶自抗扰ADRC和MPC路径跟踪控制相关的文档,这些文档涵盖了研究的引言、车辆稳定性与抗干扰性分析、以及具体的控制策略研究等内容。通过这些文档,研究人员可以深入理解该控制策略的设计理念、实现方法和仿真实验结果,为未来该领域的进一步研究和应用提供了宝贵的资料和参考。 基于二阶自抗扰ADRC和MPC的路径跟踪控制为车辆自动驾驶提供了新的解决方案,它不仅提升了车辆路径跟踪的稳定性和精确性,还增强了系统对外界干扰的抵抗能力。随着相关技术的不断完善和成熟,我们有理由相信,这一控制策略将在未来的自动驾驶技术中扮演重要的角色。
2025-04-06 22:03:34 2MB
1
基于MPC的轨迹跟踪控制联合仿真:Simulink与Carsim参数设置详解及效果展示,基于MPC的模型预测轨迹跟踪控制联合仿真simulink模型+carsim参数设置 效果如图 可选模型说明文件和操作说明 ,基于MPC的模型预测; 轨迹跟踪控制; 联合仿真; simulink模型; carsim参数设置; 效果图; 可选模型说明文件; 操作说明,基于MPC的轨迹跟踪控制:Simulink+Carsim联合仿真效果图解析及模型操作指南 在深入探讨基于模型预测控制(Model Predictive Control, MPC)的轨迹跟踪控制联合仿真技术时,我们有必要详细解析Simulink与Carsim这两种仿真软件在参数设置上的细节及其联合仿真效果。Simulink是一个广泛应用于多领域动态系统建模和仿真的软件,其强大的模块化设计能力和丰富的工具箱为复杂系统的分析和设计提供了便利。而Carsim则是专门针对汽车动力学性能仿真的一款软件,可以模拟车辆在各种工况下的动态响应和行为。 本文将详细探讨如何在Simulink与Carsim中进行参数设置,以便实现高效的轨迹跟踪控制联合仿真。我们需要理解MPC的基本原理。MPC是一种先进的控制策略,它通过在每个控制周期内优化未来一段时间内的控制输入,来满足性能指标并保证系统的约束得到满足。MPC在轨迹跟踪中的应用,尤其是在非线性和约束条件较为复杂的车辆控制系统中,展现出了显著的优势。 在Simulink中,MPC控制器的参数设置主要包括模型预测范围、控制范围、控制变量和状态变量的定义,以及预测模型的建立等。此外,控制器的优化算法选择、目标函数和约束条件的设定也是确保轨迹跟踪性能的关键。在Carsim中,我们需要设置车辆的物理参数、环境参数、路面条件等,以确保仿真的真实性和准确性。在两者的联合仿真中,需要确保Simulink中的MPC控制器能够接收Carsim提供的实时车辆状态数据,并进行正确的控制决策输出。 文档中提到的模型说明文件和操作说明可能包括了对仿真模型的详细介绍,以及如何在Simulink和Carsim中进行操作的具体步骤。这些文件对初学者来说尤为宝贵,因为它们可以减少学习曲线,加快仿真模型的搭建速度。联合仿真效果如图所示,意味着通过恰当的参数设置,仿真模型能够在Carsim中实现预定的轨迹跟踪任务,并且可以通过Simulink直观地展示出仿真结果。 联合仿真不仅能够验证MPC算法在车辆轨迹跟踪控制中的有效性,还能够提供一个直观的平台来分析和调整控制策略,以满足不同工况下的性能要求。同时,联合仿真的结果也可以用来指导实际的车辆控制系统的设计和优化,为智能交通系统的开发提供理论基础和实践参考。 在当前智能交通和自动驾驶技术的快速发展背景下,基于MPC的轨迹跟踪控制联合仿真技术显得尤为重要。它不仅有助于解决传统控制策略难以应对的复杂工况问题,还能在保证安全的前提下提高车辆的行驶性能和舒适性。未来,随着算法的不断完善和计算能力的提升,MPC在轨迹跟踪控制领域的应用将更加广泛,并将进一步推动智能交通技术的进步。
2025-03-28 20:02:15 94KB 数据仓库
1
标题中的“预瞄跟踪控制算法”是汽车动态控制系统中的一个重要概念,它涉及到车辆在行驶过程中的路径跟踪和稳定性。预瞄跟踪控制(Predictive Path Tracking Control)是一种先进的控制策略,其核心思想是根据车辆当前状态和未来可能的行驶路径,预测未来的车辆行为,并据此调整车辆的驾驶参数,如转向角或油门深度,以实现精确的路径跟踪。 描述中提到的“单点或多点驾驶员模型”是模拟驾驶员行为的不同方法。单点模型通常简化驾驶员为一个点,考虑其对车辆输入的影响,而多点模型则更复杂,可能包括驾驶员的身体各部位的动作以及视线等多方面的因素,以更真实地模拟驾驶行为。这里的“横制”可能指的是车辆横向动态控制,即车辆在侧向的稳定性和操控性。 “纯跟踪算法”是另一种路径跟踪控制策略,其目标是使车辆尽可能接近预定的行驶轨迹,通常通过优化控制器参数来实现最小误差跟踪。这种算法在自动驾驶和高级驾驶辅助系统(ADAS)中有着广泛应用。 “carsim和MATLAB Simulink联合仿真”意味着使用了两种强大的工具进行系统仿真。CarSim是一款专业的车辆动力学仿真软件,常用于车辆动态性能分析;MATLAB Simulink则是一个图形化建模环境,适合构建和仿真复杂的系统模型。将两者结合,可以创建出详尽的车辆控制系统模型,并进行实时仿真,以便测试和优化控制算法。 标签中的“matlab 算法 范文/模板/素材”表明提供的内容可能包含MATLAB编程的示例、算法实现模板或者相关研究素材,可以帮助学习者理解和应用预瞄跟踪控制算法。 压缩包内的文件可能是关于这个控制算法的详细解释、仿真步骤或者代码示例。"工程项目线上支持预瞄跟踪.html"可能是项目介绍或教程文档,"工程项目线上支持预瞄跟踪控制算.txt"可能是算法描述或代码片段,而"sorce"可能是一个源代码文件夹,包含了实际的MATLAB代码。 这个资料包提供了一个全面的学习资源,涵盖了预瞄跟踪控制算法的设计、驾驶员模型的建立、车辆横向控制的仿真,以及如何使用MATLAB和CarSim进行联合仿真。对于研究汽车控制系统的学者、工程师或是学生来说,这是一个非常有价值的学习材料。通过深入学习和实践,可以掌握高级的车辆动态控制技术,并提升在自动驾驶和汽车电子领域的能力。
2024-11-13 15:54:43 49KB matlab
1

基于一致性算法, 在有向通讯拓扑下, 研究存在状态约束的多航天器系统分布式有限时间姿态协同跟踪控制问题. 在仅有部分跟随航天器可以获取领航航天器状态, 并且跟随航天器之间存在不完全信息交互的情形下, 设计了分布式快速终端滑模面, 提出了不依赖于模型的分布式有限时间姿态协同跟踪控制律. 根据有限时间Lyapunov 稳定性定理, 证明了系统的状态在有限时间内收敛于领航航天器状态的小邻域内. 最后通过仿真算例验证了所提出算法的有效性.

2024-09-05 22:40:41 226KB
1
针对现有非线性控制方案的一些瓶颈问题,从线性控制的角度出发,开展了一种用于WMR的线性二次型最优控制方法设计的研究。基于WMR的运动学模型采用动态反馈线性化技术将非线性运动学模型转换为线性模型;然后选取跟踪误差及误差收敛速度作为设计指标;同时考虑实现渐进跟踪,针对不同形式的参考轨迹,根据内模原理对控制器模态进行扩展,利用线性模型设计基于内模扩展LQ最优轨迹跟踪控制器;最后通过动态反馈反变换得到实际控制器。此外,通过将此方法的控制效果与几种经典方法进行仿真比对,说明了此方法对于跟踪的精确性和快速性上有较大优势。
2024-05-21 20:15:06 1.24MB
1
基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。 基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。
2024-04-28 14:08:31 629KB matlab carsim simulink 无人驾驶车辆
1
(1)Frenet坐标系下动力学建模 (2)自动驾驶车辆的换道轨迹规划 针对五次多项式换道法仅在初始时刻规划换道轨迹的问题,本文结合行驶环境边 界条件,建立五次多项式换道轨迹模型。将换道轨迹规划解耦成横、纵向轨迹规划。 综合考虑换道性能指标,建立横向轨迹优化模型。 (3)自动驾驶车辆的换道轨迹跟踪控制 针对轨迹跟踪控制算法计算量大,鲁棒性差等问题,本文对横、纵向轨迹跟踪进 行解耦控制,从而降低计算量。采用实验的方法,制作油门/刹车标定表,通过双PID 控制器进行纵向轨迹跟踪控制;采用Ackermann公式设计控制函数,将滑模切换函数 替换为状态向量的第四个状态量,从而证明系统运动点到达滑模面以后,不受外界扰 动影响,具有较好的鲁棒性;通过李雅普诺夫函数证明了系统可以在有限时间内到达滑模面。 (4)高速行驶环境下两种换道场景的仿真验证 通过Matlab/Simulink分别与Prescan、Carsim联合仿真,对自动驾驶车辆的换道 轨迹规划与跟踪控制进行仿真验证。仿真结果表明,加入模型预测控制算法的五次多 项式轨迹规划方法可以有效的动态规划换道轨迹。
2024-04-27 16:07:08 30.37MB 自动驾驶 matlab 换道控制 轨迹规划
1
变频器、整流器等各种非线性电力电子器在煤矿供电系统中广泛使用,导致电网谐波问题日益突出。在电力系统中安装有源电力滤波器等装置可以地抑制谐波进而改善电网电压电流畸变情况。由于煤矿系统电网有其自身独特的复杂情况,对有源电力滤波器的稳态性能和动态性能有很高的要求。为了兼顾有源电力滤波器的动态性和稳态性,针对有源电力滤波器控制部分采用改进重复控制和PI控制并联的方式增强补偿效果。在传统重复控制器中引入无差拍控制,利用无差拍控制的超前计算误差的特性提高重复控制器的响应精度,仿真结果验证了该方法的可行性。
1
matlab,强化学习MPC模型预测控制算法 基于强化学习+MPC模型预测控制算法的车辆变道轨迹跟踪控制MATLAB仿真 使用matlab2021a或者更高版本运行!!!!
2023-12-08 09:42:15 5.87MB matlab 强化学习 模型预测控制
<html dir="ltr"><head><title></title></head><body>针对无人直升机模型阶数比较高, 设计常规反步法控制器时面临着对虚拟控制输入信号求导过程较为繁琐
的缺陷, 提出一种基于滤波器反步法的控制方法. 首先, 通过滤波器而非直接解析地对虚拟控制量求导, 从而显著简
化了反步控制器的设计过程, 而且由于导数是通过积分过程而非微分得到, 大大降低了测量噪声的影响; 然后, 基于
李雅普诺夫稳定性理论证明了补偿跟踪误差是全局指数稳定的; 最后, 通过仿真结果进一步验证了所提出方法的稳
定性和有效性.</body></html>
1