YOLOv5与DeepSORT是两个在计算机视觉领域广泛应用的算法,主要负责目标检测和多目标跟踪。在本文中,我们将深入探讨这两个技术以及如何将它们结合用于汽车和行人的多目标跟踪,这对于智能交通系统、自动驾驶车辆以及安全监控等领域具有重要意义。 **YOLOv5详解** YOLO(You Only Look Once)是一种实时的目标检测系统,以其高效和准确而著称。YOLOv5是该系列的最新版本,由Joseph Redmon等人开发,经过多次迭代优化,性能更加强大。它采用了一种单阶段的检测方法,直接从输入图像中预测边界框和类别概率,大大减少了计算时间。YOLOv5引入了以下关键改进: 1. **数据增强**:使用HFlip、Resize、ColorJitter等技术,增强了模型的泛化能力。 2. **模型结构**:采用了更高效的neck设计,如Path Aggregation Network (PANet) 和 Fused Scale金字塔,提高特征融合和多尺度信息利用。 3. **损失函数**:优化了损失函数,如CIoU(Complete IoU),改进了边界框的预测精度。 4. **权重初始化**:使用更好的预训练模型,如COCO数据集,加速收敛。 **DeepSORT详解** DeepSORT是一种基于卡尔曼滤波器和匈牙利算法的多目标跟踪框架。它结合了深度学习模型(如ReID)来估计目标的外观特征,并利用这些特征进行跨帧匹配。其核心组件包括: 1. **特征提取**:通过一个预训练的深度网络(如ResNet或MobileNet)提取目标的外观特征。 2. **卡尔曼滤波**:对目标的运动状态进行预测和更新,以处理目标的短暂遮挡和运动模糊。 3. **相似度度量**:使用马氏距离计算不同帧间目标特征的相似性。 4. **匈牙利算法**:解决分配问题,确定最佳的一一对应关系,确保跟踪的稳定性。 **YOLOv5与DeepSORT结合** 将YOLOv5和DeepSORT结合,可以实现端到端的汽车行人多目标跟踪。YOLOv5首先检测出每一帧中的目标,然后DeepSORT负责在连续帧之间进行目标跟踪。具体流程如下: 1. **目标检测**:YOLOv5模型在输入图像上进行前向传播,输出每个目标的边界框、类别和置信度。 2. **特征提取**:DeepSORT从YOLOv5的输出中提取目标的特征表示。 3. **跟踪初始化**:使用卡尔曼滤波器预测上一帧的目标状态,并为新检测到的目标分配ID。 4. **匹配过程**:根据马氏距离计算当前帧与上一帧目标特征的相似度,使用匈牙利算法进行匹配。 5. **状态更新**:更新匹配成功的目标状态,对未匹配的目标创建新的跟踪。 6. **重复步骤2-5**:对于视频的每一帧,重复以上过程,实现持续的目标跟踪。 这种结合方法在实际应用中表现出了优秀的跟踪性能,尤其在目标密集、遮挡频繁的场景下,能够有效地维持目标的连续性,实现精确的计数和追踪。 总结来说,YOLOv5和DeepSORT的结合为汽车行人多目标跟踪提供了一个强大且实用的解决方案,不仅适用于学术研究,也在实际项目如毕设、课设中大有裨益。通过理解并掌握这两个算法的工作原理和结合方式,开发者可以构建出高效的目标跟踪系统,满足各种复杂场景的需求。
2025-05-12 10:53:24 245.04MB 目标跟踪
1
卡尔曼滤波系列算法在轨迹跟踪与GPS数据处理中的应用:野值剔除与状态估计预测,卡尔曼滤波做轨迹跟踪 鲁棒卡尔曼滤波做野值剔除后的预测 扩展卡尔曼滤波对GPS数据进行状态估计滤波 ,核心关键词:卡尔曼滤波; 轨迹跟踪; 野值剔除预测; GPS数据状态估计滤波。,卡尔曼滤波技术:轨迹跟踪、野值剔除预测与GPS状态估计滤波 卡尔曼滤波技术是现代控制理论中一种非常重要的算法,特别是在处理线性动态系统的状态估计问题上显示出其独到的优越性。在轨迹跟踪和GPS数据处理领域,卡尔曼滤波技术的应用尤为广泛,它能够有效地结合系统模型和观测数据,进行状态估计和预测。在轨迹跟踪中,卡尔曼滤波可以对目标的运动状态进行实时跟踪,并预测其未来的位置,这对于自动驾驶、机器人导航以及各种监测系统来说具有重大的意义。 随着技术的发展,传统的一维卡尔曼滤波算法已不能满足所有场景的需求,因此出现了鲁棒卡尔曼滤波和扩展卡尔曼滤波。鲁棒卡尔曼滤波对系统模型的不准确性或者环境噪声的不确定性具有更强的适应性,它能够剔除数据中的野值,保证状态估计的准确性。而扩展卡尔曼滤波(EKF)则是针对非线性系统状态估计而设计的,它通过线性化非线性系统模型的方式,使得卡尔曼滤波的框架能够应用于更广泛的场合,比如GPS数据的滤波处理。 在实际应用中,卡尔曼滤波算法通常需要依赖于对系统的精确建模,包括系统动态模型和观测模型。系统动态模型描述了系统状态如何随时间演变,而观测模型则描述了系统状态和观测值之间的关系。卡尔曼滤波通过不断迭代执行两个主要步骤:预测和更新,来实现最优的状态估计。在预测步骤中,算法使用系统动态模型来预测下一时刻的状态,而在更新步骤中,算法结合新的观测数据来校正预测值,从而获得更准确的估计。 在处理GPS数据时,卡尔曼滤波技术同样发挥着至关重要的作用。由于GPS信号易受多路径效应、大气延迟等因素的影响,接收到的GPS数据往往包含有较大的误差。利用扩展卡尔曼滤波技术,可以对这些误差进行有效的估计和校正,从而提高GPS定位的精度。这对于车辆导航、航空运输、测绘和各种地理信息系统来说是至关重要的。 除了在轨迹跟踪和GPS数据处理中的应用,卡尔曼滤波技术还被广泛应用于信号处理、经济学、通信系统以及生物医学工程等多个领域。随着科技的进步和算法的不断改进,未来卡尔曼滤波技术有望在更多的领域和更复杂的系统中发挥其独特的作用。 卡尔曼滤波技术以其强大的预测和估计能力,在轨迹跟踪、GPS数据处理等众多领域内都发挥着不可替代的作用。随着算法的不断发展和完善,卡尔曼滤波技术将继续扩展其应用范围,为科技的进步提供有力的支撑。
2025-05-11 00:23:03 910KB
1
内容概要:本文详细介绍了基于Simulink平台实现无人船非线性模型预测控制(NMPC)的方法和技术要点。主要内容涵盖船体动力学方程的建立、预测控制器的设计、权重矩阵的配置、输入约束的处理以及各种调试技巧。文中强调了NMPC相较于传统控制方法的优势,特别是在处理非线性和复杂约束条件方面的能力。同时,作者分享了许多实际应用中的经验和优化建议,如通过调整权重矩阵改善轨迹跟踪性能、利用松弛变量处理障碍物规避等问题。 适合人群:从事无人船研究、自动化控制领域的研究人员和工程师,尤其是对非线性模型预测控制感兴趣的读者。 使用场景及目标:适用于需要精确控制无人船轨迹的应用场合,如海洋测绘、环境监测等。主要目标是提高无人船在复杂海况下的轨迹跟踪精度和稳定性。 其他说明:文章提供了丰富的实战经验,包括如何解决常见的仿真问题(如控制量抖振)、如何选择合适的采样时间和预测时域等。此外,还提到了一些创新性的解决方案,如采用平滑过渡的tanh函数处理舵角约束,以及引入松弛变量来应对障碍物规避等挑战。
2025-05-09 16:01:42 434KB
1
### 基于GPS的新型太阳光全自动跟踪控制系统设计 #### 概述 在现代绿色能源技术中,太阳光照明系统作为一种可持续发展的解决方案,日益受到关注。然而,要充分利用太阳光资源,解决的关键问题是如何实时精确地跟踪太阳位置。本文探讨的是一种基于全球定位系统(GPS)的太阳光全自动跟踪控制系统设计,旨在克服传统方法中的不足,如精度低、控制复杂等。 #### GPS在太阳光跟踪系统中的应用 传统的太阳定位技术包括光电二极管和实时时钟(RTC)芯片两种方式,但这些方法存在精度不高或累积误差增大的问题。相比之下,基于GPS的太阳光跟踪系统提供了一个更为精确且稳定的解决方案。GPS接收器能够获取观测点的经纬度和当前时间,结合Atmega168单片机的处理能力,计算出太阳在特定时刻的高度角和方位角,进而控制步进电机调整云台角度,实现太阳光的精准跟踪。 #### 系统设计与功能 本系统的核心在于其高精度的跟踪机制。Atmega168单片机作为中央处理器,负责解析GPS数据,执行复杂的数学运算以确定太阳位置,并向步进电机发送指令。步进电机根据接收到的信息,精确调整云台的角度,确保太阳光始终被高效捕捉。此外,系统还配备有角位置探测器,用于系统校准,确保跟踪精度达到0.5度,显著提升了太阳光能的收集效率。 #### 技术优势与创新点 1. **高精度跟踪**:通过GPS和Atmega168单片机的协同工作,系统能够实现对太阳光的高精度跟踪,显著优于传统方法。 2. **稳定可靠**:GPS的数据提供了稳定的时间和地理位置信息,避免了RTC芯片累积误差的问题,确保了长期运行的准确性。 3. **智能化控制**:系统通过角位置探测器自动校准,减少了人工干预的需求,提升了系统的自动化程度和易用性。 4. **环保节能**:太阳光照明系统取代了电力照明,大幅降低了能源消耗,符合绿色健康、节能环保的发展理念。 #### 结论 基于GPS的新型太阳光全自动跟踪控制系统的开发,标志着太阳能利用技术的重大进步。它不仅解决了太阳光定位的关键问题,还提高了太阳光能的收集效率和利用精度。这一创新设计将为太阳能照明领域带来革命性的变化,促进绿色能源技术的普及和应用,对环境保护和可持续发展具有重要意义。 该系统的设计充分展示了现代科技与可再生能源的完美结合,为未来的太阳光利用开辟了新的路径,预示着一个更加绿色、智能的能源未来。
2025-05-09 15:20:39 356KB gps
1
基于FPGA的图像识别与跟踪系统是利用现场可编程门阵列(FPGA)作为主要处理单元,通过硬件描述语言实现对图像数据的实时处理。FPGA以其并行处理能力和可定制化硬件特性,非常适合用于图像识别与跟踪等需要高实时性和特定算法实现的应用场景。本文介绍的系统设计以FPGA作为主芯片,主要采集图像信息,识别目标物体,并实现对目标的稳定跟踪。 本系统采用了MT9M011型号的数字图像摄像头,该摄像头具备较高的图像传送帧率和多种工作模式,本文选择了传送帧率为35fps的VGA(640×480)模式。MT9M011的高性能能够保证图像信息采集的实时性和清晰度,对于识别与跟踪系统而言,快速且清晰的图像传输是保证后续处理准确性的基础。 系统的主要处理芯片选用了Altera公司的EP2C35系列FPGA芯片。这系列FPGA提供了足够的逻辑单元以实现复杂的图像处理算法,同时,它们的I/O接口和内部存储器也足以支持快速的数据输入输出和图像数据缓存。 图像信息采集模块通过MT9M011摄像头采集初始图像,然后系统对这些图像进行色彩转换和灰阶处理。色彩转换通常用于将图像从RGB颜色空间转换到更适合处理的灰度空间,因为灰度图像简化了数据,同时保留了足够的信息用于边缘检测和其他图像分析任务。 识别跟踪模块利用Sobel边缘检测算法进行目标物体的识别。Sobel算法是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导,可以有效突出图像中的高频信息,即边缘部分。算法对每个像素点进行邻域梯度运算,得到该点的近似梯度值。在本系统中,基于模型匹配的Sobel边缘检测算法与目标物体的特征进行匹配,从而识别目标。 接下来,系统采用了一种结合边缘特征检测和区域特征检测的跟踪算法来实现对目标物体的稳定跟踪。边缘检测算法关注于图像中物体边缘的特征,而区域特征检测则侧重于图像中某些具体区域的特征,例如亮度、纹理等。将两者结合起来,既可以从轮廓上判断物体位置,也可以从区域特征上进行精细的识别和跟踪,从而提高整个跟踪系统的稳定性和鲁棒性。 系统总体结构由图像信息采集模块、图像目标信息识别跟踪模块、图像存储模块和图像识别跟踪结果输出模块四大模块构成。图像存储模块使用SDRAM存储芯片,提供了足够的存储空间和读写速度来缓存处理中的图像数据,这使得系统在图像采集、处理和显示的过程中能够保持数据的连贯性,这对于确保目标物体跟踪的稳定性至关重要。 图像识别跟踪结果的输出采用VGA显示标准,VGA(Video Graphics Array)是一种广泛使用的视频传输标准,它能够提供丰富的色彩和较高的分辨率,非常适合用于图像处理结果的实时显示。 本系统设计的先进性在于采用了硬件描述语言开发的FPGA平台,与传统基于CPU或GPU的图像识别与跟踪系统相比,FPGA平台可以提供更高的实时处理能力和更低的功耗,尤其适合于对实时性要求高以及功耗敏感的应用场景,如军事监控、机器人导航、智能安防等领域。 基于FPGA的图像识别与跟踪系统具有高实时性、高稳定性和硬件平台可定制化的优势。该系统的实现为图像识别与跟踪技术的发展提供了新的可能性,不仅在技术上实现了突破,也为实际应用提供了强有力的支撑。
2025-05-08 21:23:50 603KB 专业资料
1
基于FPGA的运动目标检测跟踪系统:从顶层设计到模块实现的全流程实践(进阶版结合XY轴舵机控制),基于FPGA的运动目标检测跟踪系统项目 ,FPGA项目,FPGA图像处理 FPGA项目 采用帧间差分法作为核心算法,该项目涉及图像采集,颜色空间转,帧间差分核心算法,腐蚀等形态学处理,目标定位,目标标识,图像显示等模块。 通过该项目可以学习到以下两方面内容 1.FPGA顶层架构设计、各功能模块详细设计、模块间接口设计; 2.各模块的RTL编写与仿真,在线逻辑分析,程序调试等。 本项目提供完整项目源程序,仿真程序,在线逻辑分析,以及讲解等 ***另有结合XY两轴舵机控制的进阶版本,详细信息欢迎咨询*** 涉及整个项目流程的完整实现,适合于FPGA学习者,对于提高FPGA设计能力有很大的帮助。 非诚勿扰 主页还有更多有关FPGA图像处理算法实现的项目,欢迎咨询。 其中包括: 1.颜色空间转 2.快速中值滤波算法 3.sobel边缘检测算法 4.OTSU(最大类间方差)算法 5.卡尔曼滤波算法 6.局部自适应分割算法 7.目标检测与跟踪算法 8.图像增强去雾算法 #FPGA #图像处理 #
2025-05-08 21:18:30 3.05MB
1
针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。
2025-05-07 20:14:03 609KB 论文研究
1
小目标跟踪视频集.zip,红外小目标视频数据集, 可做目标跟踪算法测试,均为mp4视频文件,可直接进行目标跟踪使用 数据集名称:A dataset for infrared image dim-small aircraft target detection and tracking under ground / air background 参考的资源链接(图片数据集):https://www.scidb.cn/en/doi/10.11922/sciencedb.902
2025-05-05 23:50:02 30.61MB 目标跟踪 数据集
1
海思35XX-KCF图像跟踪
2025-04-30 00:54:12 5KB kcf
1
UR5机械臂作为一款工业机器人,其在自动化领域中扮演着极为重要的角色。六自由度机械臂的设计赋予了UR5高灵活性和精准的操作能力,使其能够在工业生产中执行复杂任务。PID(比例-积分-微分)控制是一种常见的反馈控制机制,通过调整控制参数以减小误差,达到系统期望的性能,对于机械臂轨迹跟踪控制尤为重要。 为了实现精确的轨迹跟踪,机械臂控制系统需要建立准确的数学模型。在此过程中,DH参数表(Denavit-Hartenberg参数)提供了一种系统化的方法来描述机器人连杆和关节之间的关系,它定义了连杆的长度、扭转角度、偏移量等参数,使得能够以数学的方式对机械臂的运动进行描述和仿真。 坐标系表示是机器人运动学分析中的基础,通过定义不同的坐标系来表示机械臂上每个关节的位置和姿态,这对于建立机械臂运动模型至关重要。三维模型则是对机械臂结构的直观展现,它不仅能够帮助工程师理解机械臂的各个组成部分,而且对于进行物理仿真和机械设计优化也起着关键作用。 在机械臂的控制系统中,能够导出角度、角速度、角加速度以及力矩等数据,这些数据对于分析机械臂在执行任务时的动态性能和预测其行为至关重要。通过这些数据,工程师可以对机械臂进行性能评估,调整PID控制参数,以提高跟踪精度和稳定性。 误差曲线图是评估机械臂控制系统性能的重要工具。通过分析误差曲线,工程师可以直观地看到机械臂执行任务过程中的跟踪误差变化情况。根据误差曲线的形状和大小,可以对控制算法进行调整和优化,以实现更高的控制精度。 本文档提供的文件名称列表显示,除了六自由度机械臂的技术分析和介绍外,还包括了机械臂的三维模型文件、DH参数表以及相关的仿真分析报告。这些文件为实现UR5机械臂的精确控制提供了必要的理论和实践基础。 UR5六自由度机械臂的PID轨迹跟踪控制涉及多个领域的知识,包括机器人运动学、控制理论、三维建模以及仿真技术等。通过对这些领域知识的综合运用,可以实现对UR5机械臂的精确控制,使其在工业自动化生产中发挥更大的作用。
2025-04-29 20:16:12 151KB sass
1