由于真实收益变动过程的不可观察性,因此在波动率预测评估中最具挑战性的问题之一是为事后波动率找到准确的基准指标。 本文使用澳大利亚股票市场的超高频数据来构建无偏的事后波动率估计量,然后将其用作评估各种实际波动率预测策略(基于GARCH类模型)的基准。 这些预测策略可允许创新的偏斜分布,并在标准GARCH波动率模型之外使用各种估计窗口。 在样本外测试中,我们发现,与使用基于稀疏采样的日内数据的实际波动率相比,使用无偏后波动率估计量,可以系统地减少所有模型规格的预测误差。 特别是,我们显示出三种基准预测模型在回报率和估计窗口分布不同的情况下胜过大多数修改后的策略。 比较三种标准的GARCH类模型,我们发现非对称功率ARCH(APARCH)模型在正常和金融动荡时期均表现出最佳的预测能力,这表明APARCH模型具有捕获Leptokurtic收益和典型波动率特征的能力。澳大利亚股市。
1
超高频RFID读写过程耗时线程
2022-04-11 14:06:38 16KB RFID EPC ENCODE
1
提出了一款超高频频段(Ultra High Frequency,UHF)(912~935 MHz)和ISM频段(2.415~2.465 GHz)的RFID读写器圆极化单层结构微带天线,采用FR4板材为基板、辐射贴片采用切四角的缝隙贴片的结构,实现了天线的小型化设计,满足了天线的设计要求。通过HFSS三维电磁仿真软件和神经网络(Neural Network,NN)对天线模型进行了仿真分析。结果表明:回波损耗小于–10 d B的阻抗带宽为23 MHz(912~935 MHz)和50 MHz(2.415~2.465 GHz);在UHF频段与ISM频段内,读写器天线的最大增益为–3.6 d B和1.857 d B,能满足我国射频识别读写器的应用要求。
2022-04-03 22:56:34 548KB 微带天线; 双频; 神经网络; 超高频;
1
提出了一种基于K近邻KNN(K-Nearest Neighbour)算法的换流变压器故障诊断方法。设计了4种人工油纸绝缘缺陷,采用超高频天线采集局部放电信号。通过对局部放电超高频信号进行小波包多尺度变换,计算其多尺度小波系数的能量系数。采用KNN算法对局部放电超高频信号能量特征参数进行识别。将反向传播神经网络和所提方法对局部放电超高频信号模式的识别结果进行了对比,结果表明所提出的方法更适用于换流变压器故障诊断。
1
超声波高频驱动电路设计,希望对大家有所帮助
2022-02-26 15:43:12 211KB 超声波 高频 驱动电路
1
针对LLC负载1 MHz超高频感应加热电压型谐振逆变器并联运行中,串联不同电感时逆变器的工作特性进行了理论分析,探究逆变器换流角度以及LLC品质因数的变化,对逆变器输出电压存在差异时换流角度的变化进行了研究。得出1 MHz的电压型谐振逆变器在存在电感差异、电压差异时换流角度是较小的,可以保证逆变器工作在小感性换流状态。最后通过MATLAB/Simulink仿真实验验证了理论分析的正确性,并对仿真结果进行了综合分析。
2022-02-10 19:52:30 597KB LLC负载
1
超高频射频识别系统具有读写速度快、存储容量大、识别距离远和同时读写多个标签等特点,已经在物流等领域得到越来越广泛的应用。介绍了符合ISO 18000-6 标准的超高频RFID电子标签主要特点、结构、工作原理及读写方法,提出了相应读写器的解决方案,重点阐述了读写器的硬件设计及软件程序流程。实际应用结果表明该读写器读写速度快(单个标签64bit/ 6ms)、识别率高,识别距离远(≥4m)。
2021-12-20 22:37:01 457KB 超高频 射频识别 串口通信 RS232
1
超高频射频识别系统具有读写速度快、存储容量大、识别距离远和同时读写多个标签等特点,已经在物流等领域得到越来越广泛的应用。介绍了符合ISO1800026标准的超高频RFID电子标签主要特点、结构、工作原理及读写方法,提出了相应读写器的解决方案,重点阐述了读写器的硬件设计及软件程序流程。实际应用结果表明该读写器读写速度快(单个标签64bit/6ms)、识别率高,识别距离远(≥4m)。
2021-12-20 18:10:31 277KB 射频识别 标签 读写器 超高频
1
抗干扰能力就差,反射能力差,感应距离会时远时近, 也会受其它信号(例如手机基站信号和WIFI 信号在 2.5GHz 左右)的干扰, 产生误报。请调节发射信号震荡电路和接收信号电路或者PCB的板材厚度, 改变发射频率,最好使得发射频点高于 2.6GHz
2021-12-07 21:57:48 690KB 雷达 超高频 干扰
1
本文介绍了超高频接收系统射频前端电路的芯片设计。从噪声匹配、线性度、阻抗匹配以及增益等方面详细讨论了集成低噪声放大器和下变频混频器的设计。电路采用硅基0.8 Lm B iCMO S 工艺实现, 经过测试, 射频前端的增益约为18 dB, 双边带噪声系数2. 5 dB, IIP3 为+ 5 dBm , 5 V 工作电压下的消耗电流仅为3. 4 mA。
1