贝叶斯超参数优化matlab代码主动 GP 超参数学习 这是 MATLAB 中描述的主动学习 GP 超参数方法的 MATLAB 实现 Garnett, R.、Osborne, M. 和 Hennig, P. 高斯过程线性嵌入的主动学习。 (2014)。 第 30 届人工智能不确定性会议(UAI 2014)。 给定函数f上的 GP 模型: 该例程依次选择一系列位置X = { x i } 进行观察,目的是尽快学习 GP 超参数θ 。 这是通过保持概率信念p ( θ | D ) 并通过最大化贝叶斯主动学习差异 (BALD) 标准来选择每个观察位置来完成的 N. Houlsby、F. Huszar、Z. Ghahramani 和 M. Lengyel。 用于分类和偏好学习的贝叶斯主动学习。 (2011)。 arXiv 预印本 arXiv:1112.5745 [stat.ML]。 此实现使用 Garnett 等人中描述的对 BALD 的近似。 上面的论文,它依赖于近似 GP 超参数边缘化的“边缘 GP”(MGP)方法。 主要入口点是learn_gp_hyperparameters.m 。 有关简
2021-06-19 19:29:28 9KB 系统开源
1
表格基线 不同的表格基线算法与超频带加贝叶斯优化(BOHB)相结合,用于超参数优化
2021-05-07 22:33:44 18KB Python
1
本文对HPO中最基本的主题进行了综述。第一部分介绍了与模型训练和结构相关的关键超参数,并讨论了它们的重要性和定义值范围的方法。然后,研究了主要的优化算法及其适用性,包括它们的效率和准确性,特别是对于深度学习网络。本研究接下来将回顾HPO的主要服务和工具包,比较它们对最先进的搜索算法的支持、与主要深度学习框架的可行性以及用户设计的新模块的可扩展性。
2021-04-22 16:51:52 1.96MB HPO
1
压缩包为贝叶斯优化在机器学习和深度学习中应用的小案例,里包含: (1)data:iris.csv和mnist.npz; (2)贝叶斯优化_ML.py; (3)贝叶斯优化_DL.py。
2021-04-21 21:03:25 10.96MB 贝叶斯优化 深度学习 机器学习 Python
1
责任 RLiable是用于增强学习代理的快速超参数调整的实验并行化框架。 它旨在满足对可分发的Spark / TF兼容模型的需求,该模型允许以简单reliable方式扩展实验。 执行 先决条件: 版本 Python > = 3.6 火花 3.0.1 Hadoop 2.7 Java 1.8 Scala 2.11 注意: scripts/install_spark_hpc.sh提供了Linux(基于Debian)安装脚本。 安装要求 创建virtualenv并安装Python依赖项 virtualenv -p $( which python3 ) env source env/bin/activate pip install -r requirements.txt pip install -r dqn-requirements.txt 进行实验 当前的优化算法基于配置标志opt
2021-03-02 10:05:28 39KB Python
1