目前道路违规事件检测多在固定摄像头下人工框定区域进行检测,但人工框定工作量大,并且摄像头转动会使得框定区域失效。针对此问题,率先提出一种目标检测与语义分割相结合的违停检测方法。该方法首先使用目标检测Faster R-CNN,采取迁移学习、多阶段训练等方法建模,提取共享单车的类别与检测框位置信息。再使用group normalization改进语义分割DeepLab v3+网络模型,提高其在小batch size下训练的模型精度,用于分割图像获得道路的语义和区域信息。最后综合两部分信息,根据单车检测框内不同道路区域所占比例判定共享单车是否属于违规停放。实验结果表明,该方法对共享单车类别的mAP为72.36%,对共享单车违规停放的平均检测率为89.11%,适用于真实城市道路监控环境中。
1