本文通过50行Python代码实现视频中物体颜色识别和跟踪效果,通过实例截图和实例代码给大家讲解的非常详细,需要的朋友可以参考下
1
车道检测 OpenCV C ++程序,用于识别和跟踪车道及其相交处。 可用于自动驾驶功能,例如变道,盲点检测,山顶检测,转弯检测和标志识别。 适用于输入视频,图像或实时视频源。 最初目标: 检测车道及其在地平线上的相交点,以便跟踪该点的运动,以确定车辆是否在转弯或正在改变坡度。 示范: 输入视频:派克峰赛道(上,下路) 特征 语言:C ++(OpenCV) IDE:Xcode 信号处理: 坎尼边缘检测仪 霍夫线探测器 坡度和转弯跟踪(不完整) 可定制的投资回报率 要求 OpenCV g++ 视频或图像文件或视频供稿 (可选)xcode以利用随附的项目文件 如何使用 我只在osx上使用它,所以您可能会自己一个人! brew install opencv 在LaneDetect.cpp设置输入文件的LaneDetect.cpp 在LaneDetect.cpp配置选项 ho
2021-11-10 20:02:46 54.12MB C++
1
3.4 小角度假设下的车辆动力学模型 通过结合车辆空间状态方程和轮胎模型,可以建立非线性状态空间表达式, 但对于模型预测控制器的设计来说过于复杂,因此需要对其进行简化。由轮胎模 型纵向力-滑移率,侧向力-侧偏角和纵向力组合工况,侧向力组合工况曲线可知, 在侧偏角和纵向滑移率较小的时候,轮胎力可以采用线性函数近似描述。在侧向 加速度小于 0.4g 的情况下对常规轮胎具有较高的拟合精度,在这个范围内,可以 用式 3.1 和式 3.2 表示轮胎纵向力和侧向力。 在之前所建立的非线性模型中,存在较多的三角函数,增大了模型简化的难 度。因此在轮胎力的计算中,在小角度假设条件下,满足近似条件: cos 1,sin , tan       (3.23) 式中 可以表示为前轮转角,前、后轮轮胎侧偏角等。 通过简化,轮胎侧偏角的计算式可以表示为: f f y a x       (3.24) r y b x     (3.25) 根据轮胎侧偏角计算公式和线性轮胎模型,前、后轮侧向力计算公式为: ( ) cf cf f cr cr y a F C x b y F C x         (3.26) 前、后轮胎纵向力表达式为: , lf lf f lr lr r F C s F C S  (3.27) 将以上化简结果代入状态空间方程后,得到基于前轮小偏角和线性轮胎模型 假设的车辆动力学非线性模型: cr r cr 2[C ( ) C ] 2[C C ( ) C s ] 2[ ( ) C ] sin cos cos sin cf f lf f cf f lr z cf f y a b y my mx x x y a mx my s x y a b y I aC b x x Y x y X x y                                      (3.28) 在本文控制系统的预测模型中,状态量为  , , , , , T = y x Y X   ,控制量为 f   。 本论文以已有研究成果为基础,将 MPC(Model Predictive Control)算法应用 万方数据
1
水下目标检测、识别和跟踪是具有重要意义的热点研究问题,在军事和民用领域都有重要的应用.鉴于此,对基于声呐图像的水下目标检测、识别和跟踪原理、方法以及典型算法的研究进展进行全面阐述.首先论述基于声呐图像的水下目标检测、图像去噪、图像分割等方面的主要进展以及典型算法和算法扩展;然后对水下目标声呐图像识别中的特征提取、特征分类方法和主要技术难点进行讨论;最后阐述基于水声信号处理和声呐图像信息的水下目标跟踪方法和算法.通过对水下目标处理过程各个过程的深入讨论和对比分析,指出基于声呐图像的水下目标检测、识别和跟踪中急需解决的关键科学问题及可能的解决思路,并对该领域的未来发展方向做进一步的展望.
1
自述文件 方法 方法描述于: 用例 方法用于: 如何设置? 为避免安装问题,建议使用virtualenv Python虚拟环境。 然后使用pip安装所有依赖项(numpy,scipy,matplotlib,netCDF4等),例如: pip install numpy scipy netCDF4 matplotlib opencv-python pyyaml pint polygon3 然后运行以下命令以安装涡流跟踪器: python setup.py install 工具库 基于PY涡流跟踪器模块上的几个例子是 。 快速使用 EddyId share/nrt_global_allsat_phy_l4_20190223_20190226.nc 20190223 adt ugos vgos longitude latitude ./ -v INFO 进行识别,然后: EddyT
2021-08-17 20:28:42 9.3MB tracking detection ocean identification
1
行业分类-物理装置-人体识别定位跟踪系统.zip
该文章由中科院自动化所谭铁牛教授编写,简要介绍了计算机视觉的研究和应用,如目标识别与跟踪、人脸识别、异常行为检测等。
1
针对智能交通系统中的实时车型识别和车流量统计,提出了一种有效的车流量检测和车型识别算法。首先根据机动车道在视频图像中设置虚拟线圈作为检测区域,运用背景差分提取前景目标,并采用基于颜色和纹理的阴影检测方法去除所检测目标中的阴影部分。然后采用两步法进行车型识别并统计对应的车型的车流量。
1
OPENCV-dnn+MultiTracker实现视频流的目标识别跟踪算法源代码
1
帧间差分获取运动区域,采用梯度阈值获取二值图像,再提取运动区域目标特征点的光流,对光流矢量采取分 段标注,设置感兴趣区域。利用光流特性实现目标的识别,定位与跟踪,对于运动目标的跟踪具有实时性和鲁棒性,能够用于 车流量统计,对车辆辅助行驶研究起到一定的铺垫作用,实验结果证明该算法的有效性和实用性。
2021-05-25 21:49:55 414KB 改进的光流法
1