opencv逐帧读取视频转存jpg,一件运行exe
2024-05-29 02:15:00 260.48MB opencv 源码软件 人工智能 计算机视觉
1
针对舞蹈视频与动作识别技术相结合的问题,文中研究探讨一种基于计算机视觉的舞蹈视频动作识别技术。该技术首先将获取到的舞蹈视频图像进行灰度化、背景消除和滤波去噪等预处理操作后,得到该视频序列中人物的动作特征。然后利用支持向量机SVM从对象特征样本集中抽取一部分数据样本用于模型的学习训练,训练完成后再对其他部分进行动作分类识别。KTH动作数据库与实拍舞蹈视频的仿真测试结果说明,该方法能够迅速、有效地识别出舞蹈视频中所出现的动作,且平均识别准确率在85%以上,验证了该技术应用于舞蹈动作识别中的可行性。
2024-05-21 10:24:07 1.65MB 计算机视觉; 动作识别
1
这是一个基于YOLOv8模型的热图生成工具,可以用来分析和可视化深度学习模型在图像识别和目标检测任务中的关注点。该工具使用Grad-CAM技术生成覆盖在原始图像上的热图,从而揭示了模型在预测时赋予图像不同部分的重要性。热图中不同颜色的区域显示了模型关注的程度,红色或黄色表示高度关注的区域,蓝色或绿色则表示关注度较低的区域。 该工具可以帮助研究人员、学生和AI工程师更好地理解和解释他们的模型,尤其是在进行模型调试和优化时。它对于提高模型透明度和加深用户对模型决策过程的理解非常有价值。 使用这个工具,用户可以对自己的图像数据集进行热图分析,从而洞察模型在处理特定图像或图像集时的行为模式。它适用于多种用途,包括但不限于自动驾驶车辆的视觉系统,安防监控,医疗图像分析,以及任何需要图像识别和目标检测的应用。 请注意,使用此工具需要基本的深度学习和计算机视觉知识,以及对YOLOv8模型和PyTorch框架的熟悉。 (该文件建议放在你yolov8项目根目录下)
2024-05-16 16:09:35 7KB pytorch 计算机视觉 源码
1
计算机视觉算法与应用
2024-05-06 12:11:31 38.5MB
1
基于机器视觉的害虫种类及数量检测 一、研究目的 研究的目的在于建立一套远程病虫害自动识别系统,有助于缓解农业植保人员和病虫害鉴定专家的人力资源紧张,有助于病虫害知识有限的农业人员进行及时的病虫害检测,并且,通过害虫种类数目的监测和信息收集,定期对昆虫数据进行整理和分析,建立病虫害爆发的规律模型,进而预测判断病虫害爆发的时间,及时通知农业植物保护人员和农户进行合理地科学地预防。提高农作物产量和质量。 二、研究内容及结论 (1) 设计实现了一套可适用于野外的害虫捕获和图像采集装置。该装置放置在农业种植区域,24 小时进行害虫的诱杀和图像采集,同时,装置可以通过无线网络将害虫图像上传至农业监控中心虫类鉴别服务器,并进行害虫种类的识别,进行产区内害虫种类数目的信息收集。 (2) 开发了一套基于机器视觉的昆虫计数工作方法。开发了一套的适用于苍蝇粘板等包含多数昆虫设备的图像的基于机器视觉的昆虫计数工作方法。该方法首先对包含多数昆虫的图片进行二值化预处理,然后进行轮廓的查找,并进行轮廓的计数,得到的数目反映了图片中的昆虫数目的数量级。该方法适用于苍蝇粘板图像等包含多数昆虫虫体的图像上。 (3)
1
YOLOv5算法本身非常优秀,随着其版本的迭代更新,网络各个模块对物体检测中的常见问题都做了一定的优化改进,本身就具有较好的工程实用性。 Input部分完成数据增强、自适应图片缩放、锚框计算等基本处理任务;Backbone部分作为主干网络,主要使用CSP结构提取出输入样本中的主要信息,以供后续阶段使用;Neck部分使用FPN及PAN结构,利用Backbone部分提取到的信息,加强特征融合;Prediction部分做出预测,并计算CIOU_Loss等损失值。 随着计算机视觉技术的不断发展,目标检测领域里的各种算法技术层出不穷,针对不同事物不同目标,我们需进行多方比较,进而择优选择。其中,YOLOv5算法,得益于速度快精度高而闻名,是一种经典且稳定的算法。 此份结构图,有助于大家了解yolov5模型的整体框架与架构,帮助大家理清原理熟悉源码设计。
2024-04-28 10:08:30 238KB 计算机视觉 yolov5 算法设计 总体架构
1
火焰识别 + yolov8 + 测试视频 + 预测权重.pt 资源包含: 1.预测权重 2.测试视频 直接下载后放入yolov8官方工程中,直接执行官方detect即可进行火焰识别
2024-04-23 19:23:17 91.76MB 目标检测 YOLO 火焰识别 计算机视觉
1
为了有效预防疲劳驾驶引发的交通事故,本文开发了一种基于 dlib 模型的疲劳驾驶检测系统。研究表明,疲劳状态常常表现为人体面部表情中的眨眼、打哈欠和点头等行为。本系统通过提取驾驶员面部的68个特征点及其坐标,并利用 dlib 模型计算长宽比,从而统计驾驶员眨眼和打哈欠的次数。同时,利用人体姿态估计算法,以便统计驾驶员的点头次数。通过分析驾驶员的眨眼、打哈欠和点头次数,本系统能够及时检测出驾驶员的疲劳驾驶状态,并及时作出安全提示,从而有效预防疲劳驾驶引发的交通事故。
2024-04-22 14:34:57 1.13MB 程序设计 计算机视觉 web设计 疲劳检测
1
本资源是摔倒识别数据集的yolov8格式,可以直接使用yolov8训练。 随着科技的不断进步,人工智能已经逐渐渗透到我们的日常生活中。其中,摔倒识别模型的设计与应用,更是体现了技术对生活的深切关怀。这一模型的重要性不容忽视,它关乎到每一个人的生活安全与健康。 对于老年人或者身体机能受损的人群来说,摔倒是一个常见的风险。在无人陪伴的情况下,一旦发生意外,后果不堪设想。而摔倒识别模型,能够在第一时间察觉到这一情况,迅速做出反应,为救援争取宝贵的时间。不仅如此,通过实时的数据分析,它还能预测摔倒的高风险时刻,提前做出预警,避免不幸的发生。 此外,摔倒识别模型的设计也对医疗领域有着深远的影响。它不仅能够为医生提供更加准确、全面的病人数据,还能协助医生进行远程监控,确保患者得到及时的医疗援助。这对于那些需要长期照顾的患者来说,无疑是一个巨大的福音。 摔倒识别模型不仅仅是一个技术产品,更是对人类生活质量的保障和提升。它体现了科技的力量,也展现了我们对生活的责任和关怀。设计并不断完善这样的模型,是我们对未来的期待,也是我们对生活的承诺。
2024-04-15 19:58:08 259.07MB 数据集 目标检测 计算机视觉
1
yolov8### 内容概要 本文详细介绍了如何使用YOLOv5进行目标检测,包括环境配置、数据准备、模型训练、模型评估、模型优化和模型部署。YOLOv5是一个非常流行的目标检测模型,以其速度和准确性而闻名。本文旨在帮助初学者快速上手YOLOv5,并在自己的项目中实现目标检测。 ### 适用人群 本文主要面向初学者,尤其是那些对目标检测感兴趣但没有相关经验的读者。通过通俗易懂的语言和详细的步骤,初学者可以轻松理解并实践YOLOv5的使用方法。 ### 使用场景及目标 YOLOv5适用于多种场景,如安全监控、自动驾驶、图像识别等。通过学习如何使用YOLOv5进行目标检测,读者可以为自己的项目或研究添加强大的目标检测功能,提高项目的实用性和准确性。 ### 其他说明 本文假设读者已经具备一定的Python基础和计算机视觉知识。此外,由于YOLOv5是一个不断更新的项目,建议读者关注其官方仓库以获取最新信息和更新。
2024-04-12 11:12:03 206KB 目标检测 自动驾驶 python 计算机视觉
1