计算机视觉是一门研究如何让计算机理解和解释图像信息的学科。它的发展历史悠久,从最初的三视图模型,到20世纪90年代机器学习的引入,以及最近深度学习在计算机视觉领域的突破性进展。计算机视觉的技术应用已经渗透到各个行业,包括安防、游戏娱乐、交通、医疗等领域。 计算机视觉的早期发展阶段,主要关注图像内容的建模,例如三视图建模和立体视觉。20世纪70年代,图像处理开始受到重视,而到了20世纪80年代,机器学习开始成为计算机视觉中的一个重要工具,尤其是在识别、检测和分类等应用中。1963年,美国计算机科学家拉里·罗伯茨在麻省理工大学的博士毕业论文中提出主动视觉理论和定性视觉理论,这标志着计算机视觉开始进入快速发展阶段。 进入21世纪,深度学习为计算机视觉带来了革命性的变化。2012年,Hinton的小组在ImageNet竞赛中提出了卷积神经网络AlexNet,并取得了显著的性能提升。自此之后,基于深度学习的检测与识别、图像分割以及立体视觉等技术得到了迅速发展。 GPU(图形处理器)与并行技术在计算机视觉中的应用也为计算性能带来了巨大提升。从20世纪80年代的专门运算单元到1999年NVIDIA发布GeForce 256,GPU的定义被正式提出。2000年开始尝试使用GPU加速通用计算任务,2001年GPGPU概念的提出,以及2006年CUDA的推出,这些技术的不断进步使得GPU逐渐成为深度学习训练中的标配。 基于卷积神经网络的计算机视觉应用涵盖了图像搜索、图像分类、图像分割、物体检测、人脸识别、图像描述以及生成对抗网络。深度学习模型在此基础上不断发展,极大提升了计算机视觉在各领域的实际应用效能。 全书章节涵盖了从基础的视觉色彩原理到神经网络模型,再到卷积模型与具体应用的知识。全书共分为八个章节,详细介绍了计算机视觉的基础知识与深入技术。 计算机视觉的发展历程表明,尽管让计算机像人类一样理解和解释图像仍是一个挑战,但随着深度学习和并行计算技术的不断进步,这一领域的技术正飞速发展,应用范围不断拓展,已经成为计算机科学中一个极为重要和活跃的分支。
2025-11-24 18:47:28 26.55MB
1
内容概要:本文档为《2025三届人工智能工程技术赛项-样题》,涵盖自然语言处理、计算机视觉和综合工程技术三大模块的竞赛任务。参赛者需在指定.ipynb文件中完成代码编写,涉及新闻文本分类、对抗样本评测与模型加固、非均衡图像分类、目标检测(DETR模型)、开放词汇检测等任务,重点考察数据预处理、模型构建、训练优化、结果可视化及评估能力。要求选手掌握PyTorch、Transformer、ResNet、DETR、CLIP、SAM等框架与模型的应用,并完成相应代码实现与结果截图提交。 适合人群:具备一定人工智能基础,熟悉深度学习框架(如PyTorch)和常用模型(如CNN、Transformer)的高校学生或从业人员,具备1年以上AI开发经验者更佳;适合备战技能竞赛的技术人员。 使用场景及目标:①用于全国技能大赛人工智能赛项的备赛训练;②提升在NLP、CV及多模态任务中的工程实现能力;③掌握对抗样本防御、非均衡分类、目标检测优化、开放词汇检测等前沿技术的实际应用;④熟悉从数据处理到模型部署的全流程开发规范。; 阅读建议:建议结合实际代码环境边运行边学习,重点关注各模块中需补全的关键代码逻辑(如标签平滑、mixup增强、GIoU计算、匈牙利匹配、KL蒸馏等),并严格按照任务要求保存输出结果与模型文件,确保符合评分规范。
1
在本篇计算机视觉实验报告中,学生王培钰主要任务是使用CImg库重写和封装Canny边缘检测算法,并对算法进行优化。Canny算法是计算机视觉领域中一种经典的边缘检测方法,它通过一系列步骤有效地提取图像中的边缘。以下是实验报告中涉及的关键知识点和实现过程的详细解释: 1. **Canny边缘检测算法**:Canny算法包含以下步骤: - **灰度化**:将彩色图像转换为灰度图像,通过红、绿、蓝分量的加权平均完成。 - **高斯滤波**:使用高斯滤波器平滑图像,消除高频噪声,但保留边缘信息。这里使用了`gaussian_smooth()`函数,并通过`make_gaussian_kernel()`生成高斯核。 - **计算梯度**:通过计算一阶偏导数求得图像的梯度幅值和方向。这涉及到`derrivative_x_y()`函数,以及`angle_radians()`和`radian_direction()`来确定方向。 - **非极大值抑制**:通过比较当前像素点与其邻域内像素点的梯度值,抑制非边缘像素,以减少假阳性边缘。`non_max_supp()`函数实现此操作。 - **双阈值检测**:使用高低两个阈值确定边缘,低阈值用于连接边缘,高阈值用于去除噪声。`apply_hysteresis()`函数处理这一过程。 - **边缘连接与删除**:通过`canny_line()`函数将相邻边缘连成长线,`delete_line()`函数删除长度小于20的短线条。 2. **CImg库的使用**:CImg是一个开源的C++图像处理库,实验要求只使用CImg进行图像的读取、写入和处理。通过封装,确保了代码的简洁性和可读性。 3. **代码封装**:每个功能都封装为单独的函数,如`RGBtoGray()`、`gaussian_smooth()`等,便于代码复用和维护。 4. **参数测试与分析**:对不同参数(如高斯滤波的σ值、双阈值)进行测试,观察其对边缘检测结果的影响。这有助于理解算法的敏感性和适应性。 5. **测试与调试**:通过对每一步的结果进行可视化和数量统计(如边缘像素点的数量),验证算法的正确性和效果。例如,通过比较经过连线和删线处理后的像素点数量变化。 实验过程中,学生按照学号尾号的规则分配了需要改写的代码(Code0),并成功实现了Canny算法的各个步骤,包括图像预处理、边缘检测和后处理。测试表明,经过优化的Canny算法能够有效检测图像边缘,并能根据设定的参数调整边缘的精确度和连通性。这种实践加深了对Canny边缘检测算法的理解,并提高了编程能力。
2025-11-24 09:46:41 2.15MB 计算机视觉
1
pylon Viewer是一款由Basler公司开发的软件工具,主要用于安装和运行Basler工业相机。Basler工业相机是国际知名的工业相机品牌,广泛应用于工业视觉领域,为机器视觉和图像采集提供了专业的解决方案。Pylon Viewer作为一个配套工具,不仅让使用者可以方便地安装和配置Basler相机,而且也提供了基本的测试功能,帮助用户在安装后立即测试相机是否正常工作。 在工业自动化和质量检测中,视觉系统的作用越来越重要。Basler相机能够提供高分辨率、高帧率的图像采集能力,能够满足各种严苛的工业环境和需求。Pylon Viewer则作为一种支持软件,极大地简化了相机的安装和调试过程,降低了操作的技术门槛,使得即使是初学者也能快速上手。 在使用Pylon Viewer之前,用户首先需要从Basler官网或者其他合法渠道下载安装包。根据给定的文件信息,用户下载的安装包文件名为vBasler_pylon_5.0.5.8999.exe。这表明安装包的版本号为5.0.5.8999,是该软件工具的某一个特定版本。在安装之前,建议用户先检查该版本是否兼容自己的操作系统,以及是否是Basler公司推荐的最新或较新版本,以确保最佳的使用体验和相机性能。 安装过程通常包括接受许可协议、选择安装路径以及确定安装选项等步骤。安装完成后,用户可以通过Pylon Viewer启动Basler相机,进行基本的图像捕获和查看功能。此外,Pylon Viewer还能够帮助用户进行一些简单的图像处理,例如调整图像参数、改变分辨率和帧率等,使用户能够根据实际应用需求调整相机设置,以达到最佳的视觉效果和性能。 除了作为一个独立的安装和测试工具,Pylon Viewer还提供了与其他图像处理软件的接口和兼容性,比如常见的图像处理软件和开发库,如Matrox MIL、NI LabVIEW、Halcon等。这种开放性使得Pylon Viewer成为一个具有高度灵活性的工具,能够满足不同开发和应用环境下的集成需求。 随着工业4.0和智能制造的发展,机器视觉技术的应用将越来越广泛,Basler工业相机和其配套的Pylon Viewer软件将会在未来的工业自动化进程中发挥更加关键的作用。对于工程师和开发者而言,掌握如何有效地使用这些工具,将有助于提升产品的品质和生产效率,为工业4.0的推进贡献力量。
2025-11-21 22:08:46 130.5MB 工业视觉
1
在现代工业自动化领域,机器人视觉技术的应用越来越广泛。机器人的视觉系统可以帮助机器人感知周围环境,理解任务目标,从而做出相应的动作。UR5作为一款轻量级的协作机器人,以其灵活性和易用性成为科研和工业应用中的常见选择。在进行机器人视觉研究时,Gazebo作为一款流行的机器人仿真平台,提供了一个模拟真实世界环境的平台,便于进行各种视觉算法的测试和优化。 SIFT(尺度不变特征变换)算法是一种局部特征提取方法,它能在图像中提取出具有尺度不变性的关键点,并对这些关键点进行描述,从而实现对物体的快速、准确识别,尤其在物体发生旋转、缩放或亮度变化时仍然具有良好的稳定性和区分度。在机器人视觉系统中,SIFT算法常常被用于物体位姿的估计,这对于机器人准确抓取目标物体至关重要。 在本文档“机器人视觉_UR5_Gazebo_抓取_SIFT位姿估计Ma_1743961359.zip”中,可以推断其主要内容将涉及如何将UR5机器人的抓取任务与SIFT位姿估计算法结合,并在Gazebo仿真环境中进行测试和验证。通过在Gazebo中模拟UR5机器人视觉系统的操作,研究者能够评估SIFT算法在真实世界环境下的性能表现,并对算法进行调整以提高其准确性和效率。 文档的具体内容可能会包括以下几个方面: 1. UR5机器人介绍:UR5是UR家族中的一个成员,以其6自由度的设计,能够执行复杂的空间运动任务。在文档中,可能会详细描述UR5的结构特点、运动范围、控制方式等基本信息。 2. Gazebo仿真环境搭建:文档会介绍如何在Gazebo中搭建UR5机器人模型,并设置仿真场景,包括机器人的安装位置、仿真环境的光照和纹理等因素。 3. 机器人视觉系统构建:这部分内容将涉及到视觉系统的设计,包括摄像头的选择、安装位置、分辨率等参数的设置。 4. SIFT位姿估计算法实现:文档会详细介绍SIFT算法的原理以及在UR5机器人中的实现方式,包括关键点检测、特征描述子提取、关键点匹配等步骤。 5. 抓取任务设计:文档会探讨如何利用SIFT算法进行物体位姿估计,并基于此估计指导UR5机器人的抓取动作。这可能包括抓取点的选择、抓取路径规划以及抓取动作的实现。 6. 测试与评估:文档可能会展示一系列的测试实验,包括在不同条件下的抓取成功率、算法的稳定性和效率等评估指标。 通过这些内容的深入研究,可以帮助开发者更好地理解UR5机器人在Gazebo仿真环境下的视觉抓取能力,以及如何通过SIFT算法提高抓取的准确性和效率。这不仅对学术研究具有重要意义,也为工业领域提供了实用的技术参考和解决方案。
2025-11-21 16:25:39 56.17MB
1
标题中的“halcon实现实时识别骰子点数”指的是使用HALCON这一机器视觉软件进行实时的骰子点数识别任务。HALCON是MVTec公司开发的一种强大的机器视觉软件,它提供了丰富的图像处理功能,包括形状匹配、模板匹配、1D/2D码识别、光学字符识别(OCR)等,广泛应用于工业自动化、质量检测等领域。 在描述中提到的“自编程序”意味着开发者已经编写了一个特定的HALCON应用程序,用于识别骰子的点数。这个程序可能包含了一系列的图像预处理步骤、特征提取和分类算法。而“详细说明见本人文章”,暗示了开发者可能有一篇详细的文档或博客,解释了程序的设计思路、实现方法以及遇到的问题和解决方案,这对于初学者来说是一份宝贵的参考资料。 “直接运行必然报错,请至少改一下视频路径”这部分说明了程序中存在一个已知问题,即默认的视频输入路径可能不正确,需要用户根据自己的实际情况进行修改。这通常涉及到HALCON中的VideoInput函数,该函数用于从摄像头或者视频文件读取图像流。用户需要确保提供的视频文件路径与实际的视频文件路径相匹配,或者如果使用的是摄像头,设置正确的设备ID。 在压缩包文件中,"4.2.avi"很可能是一个示例视频文件,用于演示骰子识别的过程。用户可以加载这个视频到HALCON的环境中,运行程序来查看识别效果。而"4.hdev"文件则可能是HALCON的工程文件,包含了整个识别项目的配置和代码。用户可以通过HALCON的开发环境HDevelop打开这个文件,进一步理解和学习代码结构。 在实际应用中,实现骰子点数识别可能涉及以下步骤: 1. 图像采集:使用VideoInput函数获取连续的骰子图像。 2. 图像预处理:包括灰度化、二值化、去噪等,提高后续处理的效果。 3. 特征提取:可能通过形状分析或边缘检测确定骰子的边界,然后局部分析每个点区域。 4. 分类识别:使用模板匹配或形状匹配方法将每个点区域与预定义的骰子点数模板进行比较,得出最接近的匹配结果。 5. 结果输出:将识别出的点数显示或记录下来。 通过这样的过程,HALCON能够实现实时的骰子点数识别,为各种自动化系统提供可靠的数据支持。对于机器视觉初学者,了解并实践这样的案例能有效提升对HALCON的理解和应用能力。
2025-11-20 20:20:41 17.61MB halcon 机器视觉
1
物奇微WQ5008是一款多模态3D视觉处理芯片,以下是其详细介绍: 产品概述 WQ5008是目前业内唯一一款能够同时支持双目ToF、双目结构光、结构光+ToF的融合升级方案,独创多种3D视觉核心算子硬化加速处理,拥有高吞吐率、强劲的低功耗算力以及领先的高集成度。它自研多路数据采集和神经网络深度算法,可在复杂环境下实现高频感知计算,最大程度满足客户的应用需求及创新方向。 优势特性 高性能架构:内置自研高性能RISC-V多核架构,支持增强型运算能力升级及SIMD指令集提升。 图像处理能力:全新自研ISP算法及图像预处理模块,可灵活满足图像处理需求,实现图像任意角度旋转、仿射变换、伸缩及畸变校正等。 3D视觉处理:进一步完善3D视觉硬件处理模块,除结构光外,新增TOF深度处理模块、双目处理算子。 图像采集与编码:升级支持3路1080P@30桢高分辨率图像采集、高性能图像处理以及H.264/MJPEG编码1080p@30桢。 安全性能:支持金融级的安全加密引擎,具备完整的TrustZone方案,有效预防各类侧信道攻击,为客户提供全方位的数据资产保护。自研安全NPU支持末端解密,用户训练的神经网络权重数据可以加密形式存放在flash或内存中,在进入NPU运算单元前提供流水线硬件解密。 低功耗设计:具备超低功耗及动态功耗管理,功耗指标在业界处于领先地位,在电池应用中极具性价比。 应用领域 WQ5008可广泛应用于智能门锁、刷脸支付、智能扫地机、机器人等多个领域。
2025-11-20 16:22:03 2.64MB RISC-V 3D视觉
1
内容概要:本文介绍了如何利用YOLOv8机器视觉算法实现实时车辆检测和跟踪,并将其结果实时联动到SUMO仿真器中生成仿真车辆的方法。首先,通过摄像头获取道路交通图像并用YOLOv8算法进行特征提取和目标检测,然后采用卡尔曼滤波等算法对车辆进行实时跟踪,最后将检测结果传输到SUMO仿真器中生成仿真车辆。实验结果显示,这种方法能有效提升智能交通系统的性能。 适合人群:从事智能交通系统研究的技术人员、研究人员和高校相关专业的学生。 使用场景及目标:适用于需要对车辆进行实时监控和模拟的城市交通管理项目,旨在提高交通流量管理和事故预防的能力。 其他说明:文中还讨论了未来可能的研究方向,如提高算法准确性、扩展应用场景等。
2025-11-20 15:43:54 150KB 机器视觉 车辆检测 实时跟踪
1
本文详细介绍了SegFormer的使用教程,包括环境配置、训练、评估和可视化四个主要部分。环境配置部分提供了创建conda环境、安装必要依赖的详细命令。训练部分涵盖了ADE20K数据集的准备、预训练权重的下载以及模型训练的具体步骤,包括解决yapf包版本问题和SyncBN修改为BN的注意事项。评估部分介绍了模型权重的下载和验证过程,包括对metrics.py文件的修改。可视化部分则展示了如何下载CityScapes数据集权重并可视化模型预测结果。整个教程提供了从环境搭建到模型应用的完整流程,适合初学者快速上手SegFormer。 SegFormer是一种基于Transformer的高效语义分割模型,它将编码器和解码器的结构结合,旨在提升图像分割的性能与效率。在使用SegFormer之前,需要进行一系列的准备工作,包括但不限于创建合适的计算环境和安装必要的软件包。本文提供了一个详尽的使用教程,涵盖了从环境配置到模型训练、评估以及结果可视化的所有步骤。 在环境配置部分,首先需要建立一个conda虚拟环境,并在该环境下安装PyTorch以及其他依赖项。这些步骤包括了利用conda和pip命令安装指定版本的包,以确保SegFormer的正常运行。对于某些依赖包,还需要特别注意安装特定版本,因为最新的版本可能会与SegFormer不兼容。 接下来,在训练部分,教程详细介绍了如何准备ADE20K数据集,这是进行图像语义分割任务的标准数据集之一。此外,还包括了如何下载预训练权重以及启动训练过程。在这个过程中,可能会遇到一些常见问题,例如yapf包版本不兼容,或是需要将SyncBatchNorm(SyncBN)修改为普通Batch Normalization(BN)。教程中也提供了相应的解决方案,确保用户能够顺利进行模型训练。 评估部分涉及到模型权重的下载以及验证过程,通常需要对一些细节进行调整,例如修改metrics.py文件,以适应特定的评估标准。对于初学者而言,这一点非常重要,因为它直接关系到模型性能的量化评估。 在可视化部分,教程展示了如何获取CityScapes数据集权重并用它来可视化模型的预测结果。这不仅帮助用户理解模型的预测能力,还能够直观地展示模型在不同场景下的表现,为后续的模型调优提供参考。 SegFormer使用教程通过分步骤讲解,将环境搭建、数据准备、模型训练、性能评估以及结果可视化等环节串联起来,为初学者提供了一条清晰的入门路径。无论是在深度学习、语义分割还是计算机视觉领域,该教程都具有极高的实用价值。
2025-11-20 10:32:50 542B 深度学习 计算机视觉
1
广东工业大学的计算机视觉实验1主要涵盖了图像处理的基本操作,包括图像的模糊处理、锐化处理、去噪处理、直方图的分析以及色彩空间的转换。这些操作是数字图像处理领域中重要的基础技能,对于计算机视觉专业的学生来说,是理解和掌握图像信息分析与处理的重要过程。 实验报告的撰写要求学生遵循一定的格式规范,确保实验报告的完整性、规范性、正确性和有效性。报告需要包含实验的一般信息,如组号、实验日期、实验编号和实验时间等。实验报告的正文部分则要求详细记录实验的目的、环境、内容、步骤以及结果分析,同时还需要反映出在实验过程中遇到的问题及其解决方法。 实验目的是通过编写程序,在Python环境下使用OpenCV等软件包来执行图像的模糊、锐化、去噪等操作,学习直方图的生成和直方图均衡化,并掌握色彩空间转换的技术。 实验环境说明了完成实验所使用的硬件和软件条件,例如实验所用到的处理器型号、操作系统类型、开发工具版本等。在本例中,硬件环境为搭载了Intel(R) Core(TM) i7-10510U CPU的计算机,软件环境包括Pycharm 2022.3.2和Python 3.11。 实验内容与要求部分详细介绍了实验中所涉及的各种操作和方法。例如,均值滤波、高斯滤波和中值滤波是常用的图像平滑方法,各自有不同的特点和应用场景。直方图均衡化技术可以增强图像的对比度和亮度,改善图像的视觉效果。色彩空间转换如从RGB色彩空间转换到YUV或YIQ色彩空间,对于图像的压缩和色彩处理有着重要的意义。 实验过程与分析部分要求学生记录实验中的命令、运行结果,并通过截图和文字说明详细展示实验过程。此外,需要对实验中出现的问题进行故障分析,并说明解决办法。实验结果的总结要求学生对实验结果进行深入分析,完成相关的思考题目,并提出实验的改进意见。 通过这一系列实验,学生将学会如何利用计算机视觉技术对图像进行处理和分析,这些技能对于计算机视觉领域的研究和应用开发至关重要。
2025-11-18 18:14:58 3.56MB 图像处理 计算机视觉
1