可以在Qt项目内建立一个布局,然后布局内直接添加这个控件,便可以实现Halcon的ROI绘制了,本资源采用VS2015+Halcon12(halcon10导出)+Qt编写的demo程序,提供了控件源代码,并给出了如何调用这个控件的主界面程序;
2024-09-09 18:42:04 71.73MB 图像处理 机器视觉
1
(1)本学期学习的图像处理和机器视觉课程内容主要有(请根据实际完成情况填写): 第1章的主要内容是介绍计算机视觉就是要让机器像人一样具有视觉感知能力,如图像分类、目标检测、图像分割、三维视觉、目标跟踪等 第2章的主要内容是介绍实时图像采集、利用在现代多媒体技术中占有重要的地位。 第3章的主要内容是介绍实时图像采集、利用在现代多媒体技术中占有重要的地位。 ### 图像处理和机器视觉课程设计报告知识点梳理 #### 第1章:计算机视觉概论 - **计算机视觉定义**:让机器具备人类视觉感知能力,理解图像内容。 - **核心任务**:包括图像分类、目标检测、图像分割、三维视觉、目标跟踪等。 - **图像分类**:识别图像中的对象类别。 - **目标检测**:定位图像或视频中的对象,并进行分类。 - **图像分割**:将图像划分为多个部分,每个部分代表一个对象或区域。 - **三维视觉**:从二维图像中恢复三维结构。 - **目标跟踪**:跟踪视频序列中对象的位置变化。 #### 第2章:实时图像采集技术 - **实时图像采集**:获取连续的图像流,用于后续处理。 - **现代多媒体技术**:实时图像采集在视频监控、在线教育、虚拟现实等领域的重要性。 - **关键技术**:高速摄像头、图像传感器、数据传输协议等。 #### 第3章:实时图像采集的应用案例 - **应用场景**:进一步探讨实时图像采集在不同领域的应用实例。 - **挑战与解决方案**:针对实时性的需求,如何优化算法以提高效率。 #### 第4章:HaiShoKu—图像颜色板生成工具 - **HaiShoKu功能**:自动提取图像的主要颜色和配色方案。 - **应用场景**:网页设计、UI界面设计、艺术创作等。 - **操作流程**:导入图片,选择颜色提取模式,生成调色板。 #### 第5章:计算机图像学中的仿射变换 - **仿射变换定义**:一种保持平行线不变的几何变换。 - **应用场景**:图像缩放、旋转、倾斜等操作。 - **数学原理**:通过矩阵运算实现图像的变换。 - **代码实现**:使用Python的OpenCV库进行仿射变换操作。 #### 第6章:Python中的图像平滑方法 - **中值滤波**:去除椒盐噪声的有效方法。 - **双边滤波**:保留边缘的同时平滑图像,适用于模糊处理。 - **比较分析**:讨论两种方法的优缺点及适用场景。 #### 第7章:图像分割技术 - **图像分割意义**:将图像划分为有意义的区域,便于后续分析。 - **常用算法**:阈值分割、区域生长、分水岭算法等。 - **评估指标**:准确率、召回率、F1分数等。 #### 第8章:使用PIL进行基本图像操作 - **PIL简介**:Python Imaging Library,用于图像处理的库。 - **基本操作**:裁剪、缩放、旋转、颜色调整等。 - **代码示例**:展示如何使用PIL库对图像进行简单编辑。 #### 第9章:基于特征的图像配准方法 - **图像配准**:将多张图像对齐到同一坐标系下的过程。 - **特征提取**:SIFT、SURF、ORB等算法用于关键点检测和描述。 - **匹配与融合**:寻找最佳匹配点,将图像融合在一起。 #### 第10章:Python实现LBP纹理提取 - **LBP定义**:局部二值模式,用于纹理描述。 - **实现步骤**:计算像素周围邻域的二值模式,统计频率分布。 - **应用案例**:物体识别、纹理分类等。 通过以上章节的学习,我们可以深入了解图像处理和机器视觉的基础理论与实践技术,为今后的研究和开发工作打下坚实的基础。这些知识点不仅涵盖了理论层面的讲解,还提供了具体的编程实现案例,有助于学生全面掌握图像处理和机器视觉的相关技能。
2024-09-06 15:21:14 72KB 图像处理
1
在计算机视觉领域,OpenCV(开源计算机视觉库)与Qt框架的结合是常见的开发选择,尤其是在构建C++应用时。本资源提供了关于如何利用这两者进行视觉识别软件框架开发的基础知识。 OpenCV是一个强大的计算机视觉库,它包含了众多用于图像处理、特征检测、图像识别、机器学习等功能的算法。OpenCV支持多种编程语言,包括C++,使得开发者可以方便地进行图像处理和计算机视觉任务的实现。在"6.16.opencv案例教程"中,你可能会找到如图像读取、基本操作(如缩放、旋转、颜色空间转换)、滤波、边缘检测、特征匹配等经典示例,这些都是计算机视觉中的基础操作。 Qt则是一个跨平台的应用程序开发框架,适用于桌面、移动和嵌入式设备。它提供了丰富的UI设计工具和组件,使得开发者能够创建美观且功能丰富的用户界面。当OpenCV用于处理图像和视频数据时,Qt可以用于构建用户交互界面,将处理结果展示出来。在"6.17.框架搭建"中,可能讲解了如何在Qt环境中集成OpenCV,创建窗口,将OpenCV处理的图像显示到界面上,以及如何响应用户输入来控制OpenCV的处理流程。 虽然资源提到代码不完善且存在bug,但它们仍能作为一个起点,帮助初学者理解如何将OpenCV和Qt结合使用。你可以从中学习到以下几点: 1. **集成OpenCV与Qt**:这通常涉及到配置项目的编译设置,确保OpenCV库被正确链接,并在Qt代码中引入必要的头文件。 2. **创建图像显示窗口**:在Qt中,你可以使用`QLabel`或者`QImage`来显示OpenCV处理后的图像。 3. **事件处理**:学习如何捕获用户事件,如按键或鼠标点击,然后根据这些事件调用OpenCV的相应处理函数。 4. **线程管理**:由于图像处理通常较耗时,可能需要在后台线程进行,以避免阻塞UI。这涉及到Qt的多线程知识和OpenCV的异步处理。 5. **错误调试**:资源中提到的bug是学习过程的一部分,通过调试和修复错误,你能更深入地理解代码的工作原理。 6. **持续学习与改进**:这个资源只是一个基础框架,意味着你还有很大的发展空间。你可以逐步完善代码,增加更多功能,如对象检测、人脸识别,甚至深度学习模型的集成。 通过研究这些材料,你不仅可以掌握OpenCV和Qt的基本用法,还能了解到如何将两者结合起来,创建一个功能性的计算机视觉应用。尽管代码可能需要调整和完善,但这个过程本身就是学习和提升技能的好机会。
2024-09-05 11:15:35 772.8MB opencv 计算机视觉
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-05 11:08:01 2.35MB matlab
1
C# 视觉及运动控制开发(VisionAndMotionPro)
2024-08-30 14:54:20 306.95MB
1
【作品名称】:基于 python+深度学习的视觉问答【毕业设计】(含源码+答辩 ppt) 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:对于视觉问答(VQA)的研究具有深刻的学术意义和广阔的应用前景。目前,视觉问答模型性能提升的重点在于图像特征的提取,文本特征的提取,attention权重的计算和图像特征与文本特征融合的方式这4个方面。本文主要针对attention权重的计算和图像特征与文本特征融合这两个方面,以及其他细节方面的地方相对于前人的模型做出了改进。本文的主要工作在于本文使用open-ended模式,答案的准确率采用分数累积,而不是一般的多项选择。本文采用CSF模块(包括CSF_A和CSF_B)不仅对spatial-wise进行了权重计算,还对channel-wise进行了权重计算。本文采用MFB模块和ResNet152 FC层之前的tensor来结合LSTM的输出来计算每个区域的权重,而不是直接把image feature和question feature结合本文采用SigMoid来
2024-08-24 15:02:35 2.73MB 毕业设计 python 深度学习
1
这时作者自己在24年电赛e题时使用的原版代码,里面的注释已经比较详细了,基本可以完美的滤波和识别。因为硬件之间的差异,我的硬件openmv在识别时有很大的噪音,为了去除噪音,我使用的各种滤波和识别的方法进行结合,使得硬件和环境在比较恶劣的情况下也可进行识别。
2024-08-20 12:09:39 24KB python openmv
1
HALCON中文手册.pdf
2024-07-29 09:59:56 94.23MB 计算机视觉 halcon
1
Qt+OpenCV图像视觉框架全套源码上位机源码 工具可扩展。 除了opencv和相机sdk的dll,其它所有算法均无封装,可以根据自己需要补充自己的工具。 基于 Qt5.14.2 + VS2019 + OpenCV 开发实现,支持多相机多线程,每个工具都是单独的 DLL,主程序通过公用的接口访问以及加载各个工具。 包含涉及图像算法的工具、 逻辑工具、通讯工具和系统工具等工具。
2024-07-12 08:55:06 861KB opencv
1
计算机视觉是信息技术领域的一个重要分支,它涉及到图像处理、机器学习和深度学习等多个技术的交叉应用,旨在让计算机系统能够理解和解析图像或视频中的信息。在这个领域,数据集扮演着至关重要的角色,它们是训练模型的基础,使得算法能够学习到各种特征并进行分类、识别或定位。 "T91"数据集是专为计算机视觉任务设计的一个小型数据集,由张浩鹏及其团队在2019年发布。这个数据集包含91张不同的影像,这些影像涵盖了多个类别,如鲜花和车辆等。这些类别反映了我们在现实生活中可能遇到的各种物体,因此,T91数据集为研究者提供了一个基础平台,用于测试和开发新的计算机视觉算法。 在计算机视觉中,数据集的构建通常需要考虑以下几个方面: 1. **多样性**:T91数据集的91张影像体现了不同类型的物体,这有助于训练模型学习到广泛且多样化的特征,从而提高泛化能力。 2. **标注**:尽管描述中没有明确提到,但通常在计算机视觉数据集中,每张图像都会配有相应的标注,比如类别标签,这使得模型能理解每个图像的目标是什么。 3. **平衡性**:一个良好的数据集应该在不同类别的样本数量上保持相对平衡,以避免模型过于偏向于数量多的类别。不过,由于T91数据集只有91个样本,平衡性问题可能不是特别突出。 4. **质量**:图像的质量,包括清晰度、光照条件、角度等,都会影响模型的训练效果。T91数据集的图像质量直接影响到模型能否提取有效的视觉特征。 5. **规模**:T91数据集相对较小,适合于初学者进行实验或快速验证新算法的效果。对于大规模的计算机视觉项目,可能需要更庞大的数据集,如ImageNet,它包含了上百万张图像。 在实际应用中,可以使用T91数据集进行以下任务: - **图像分类**:根据图像内容将其归入相应的类别,如“鲜花”或“车辆”。 - **物体检测**:找出图像中特定物体的位置,并对其进行标注。 - **目标识别**:识别出图像中的各个目标,并给出其类别。 - **细粒度识别**:如果数据集有更详细的标签,可以进行更精确的分类,如区分不同种类的花朵或车辆型号。 由于T91数据集的大小有限,它可能更适合用于教学示例、快速原型开发或者验证新方法的初步性能。在进行深度学习模型训练时,更大的数据集通常能带来更好的性能,因为它们能提供更丰富的信息来学习复杂的模式。 在进行T91数据集的分析和建模时,可以使用Python的开源库,如PIL和OpenCV进行图像预处理,用TensorFlow、PyTorch或Keras等深度学习框架构建模型,利用matplotlib进行可视化,以及scikit-learn进行评估和调优。通过这些工具,可以实现对T91数据集的全面挖掘和利用,推动计算机视觉技术的进步。
2024-07-11 11:35:35 9.23MB 计算机视觉 数据集
1