VAE总结 VAE的本质是什么?VAE虽然也称是AE(AutoEncoder)的一种,但它的做法(或者说它对网络的诠释)是别具一格的。在VAE中,它的Encoder有两个,一个用来计算均值,一个用来计算方差,让人意外:Encoder不是用来Encode的,是用来算均值和方差的;此外均值和方差都是统计量,这里是用神经网络来计算。 事实上,VAE本质上就是在我们常规的自编码器的基础上,对encoder的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果decoder能够对噪声有鲁棒性;而那个额外的KL loss(目的是让均值为0,方差为1),事实上就是相当于对encoder的一个正则项,希望encoder出来的东西均有零均值。 另外一个encoder(对应着计算方差的网络)的作用用来动态调节噪声的强度的。直觉上来想,当decoder还没有训练好时(重构误差远大于KL loss),就会适当降低噪声(KL loss增加),使得拟合起来容易一些(重构误差开始下降);反之,如果decoder训练得还不错时(重构误差小于KL loss),这时候噪声就会增加(KL loss减少),使得拟合更加困难了(重构误差又开始增加),这时候decoder就要想办法提高它的生成能力了。两者是对抗的过程。重构损失希望p(Z|X)的方差越小越好(噪声越小,重构越容易),KL损失希望它的方差越接近1越好。
2022-10-04 15:45:06 7.96MB 自编码器 变分自编码器
1
使用稀疏自编码器实现高光谱图像异常探测 其中包含: 1、训练部分 train_SAE_pytorch.py 2、探测部分 Anomaly_detection.py 3、用到的读取数据集的函数 datasets.py 4、圣地亚哥机场高光谱数据集 sandiego_plane.mat
2022-07-30 09:08:28 3.06MB 高光谱图像 异常探测 图像处理 python
1
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。
1
自编码器算法非常简单,实现方便,训练也较为稳定,相对于PCA算法,神经网络的强大表达能力可以学习输入的高层抽象的隐藏特征向量z,同时也能够基于z重建出输入。这里基于FashionMNIST数据集进行图片重建实战。 说明文档:https://blog.csdn.net/qq_43753724/article/details/125862444?spm=1001.2014.3001.5501
2022-07-19 09:07:32 15KB 神经网络 tensorflow keras 深度学习
1
Convolutional Auto-Encoders卷积自编码器的Matlab代码,可以运行caeexamples.m对手写数据mnist_uint8进行训练测试
2022-07-06 08:42:35 10KB CAE 卷积自编码器 Matlab 深度学习
1
torch实现自编码器-Pytorch卷积自动编码器
2022-06-08 09:44:43 29KB pytorch python 人工智能 深度学习
1
支持ps软件中一键倒角,圆角,折角等操作,ps自动化处理,简单易用。
2022-05-31 19:08:31 488KB 源码软件 ps 自动化处理
1
针对双目视觉深度估计成本高、体积大以及监督学习需要大量深度图进行训练的问题,为实现无人机在飞行过程中的场景理解,提出一种面向无人机自主飞行的无监督单目深度估计模型。首先,为减小不同尺寸目标对深度估计的影响,将输入的图像进行金字塔化处理;其次,针对图像重构设计一种基于ResNet-50进行特征提取的自编码神经网络,该网络基于输入的左视图或右视图以及生成对应的金字塔视差图,采用双线性插值的方法重构出与其对应的金字塔右视图或左视图;最后为提高深度估计的精度,将结构相似性引入到图像重构损失、视差图一致性损失中,并且联合视差图平滑性损失、图像重构损失、视差图一致性损失作为训练的总损失。实验结果表明,经过在KITTI数据集上的训练,该模型在KITTI和Make3D数据集上相比其他单目深度估计方法具有更高的准确性和实时性,基本满足无人机自主飞行对深度估计准确性和实时性的要求。
2022-05-12 15:19:15 9.95MB 图像处理 无监督 自编码神 图像重构
1
python读取csv 文件,提供了神经网络的程序,以及自编码
一、概述 AutoEncoder大致是一个将数据的高维特征进行压缩降维编码,再经过相反的解码过程的一种学习方法。学习过程中通过解码得到的最终结果与原数据进行比较,通过修正权重偏置参数降低损失函数,不断提高对原数据的复原能力。学习完成后,前半段的编码过程得到结果即可代表原数据的低维“特征值”。通过学习得到的自编码器模型可以实现将高维数据压缩至所期望的维度,原理与PCA相似。 二、模型实现 1. AutoEncoder 首先在MNIST数据集上,实现特征压缩和特征解压并可视化比较解压后的数据与原数据的对照。 先看代码: import tensorflow as tf import numpy
2022-05-05 22:10:44 176KB autoencoder c input
1