该论文运用的卷积神经网络(CNN)和LSTM,其中CNN处理频率和空间信息,LSTM处理从CNN输出中提取时间相关性,并将两种模型进行融合。数据集采用的是脑电研究中最常用的DEAP和SEED数据集并且在两个数据集中都取得了很高的准确率。都达到了92%左右的准确率。
论文设计了一种新模型,称为四维卷积递归神经网络。该模型将多通道脑电信号的频域特征、时域特征和空间特征(频率、空间和时间信息)集成在一起,用来提高脑电情绪识别的准确率。首先,提取脑电的这三种特征,我们将不同通道的差分熵特征转换为4维结构来训练深层模型。然后,介绍了卷积神经网络(CNN)和长短时记忆(LSTM)单元的递归神经网络相结合的CRNN模型。CNN用于从4D输入的每个时间片中学习频率和空间信息,LSTM用于从CNN输出中提取时间相关性。LSTM最后一个节点的输出执行分类。该模型在受试者内部划分的SEED和DEAP数据集上都达到了最先进的性能。实验结果表明,结合脑电频域特征、时域特征和空间域特征(频率、空间和时间信息)进行脑电情感识别是有效的。