主要是想对DEAP脑电数据集进行单纯的频域特征分析,详情见个人主页的介绍
2022-01-02 19:09:01 4.48MB DEAP 脑电情绪识别 频域特征
脑电情绪识别的二分类算法,数据用的deap数据集。 代码主要分为三部分:快速傅里叶变换处理(fft)、数据预处理、以及各个模型处理。 采用的模型包括:决策树、SVM、KNN三个模型(模型采用的比较简单,可以直接调用库,很适合我这种新手,看起来也方便)。
基于deap数据集,采用了卷积神经网络(CNN)和长短期记忆神经网络等四种模型进行对比,并结合pyeeg进行特征提取,最终准确率达到了90
基于DEAP数据集的特征提取———近似熵、排列熵、样本熵, 包含上述三个方法的python代码实现,全部在Jupyter Notebook上实现的
2021-11-18 09:07:22 283KB deap 脑电情绪识别 脑电特征提取 python
主要内容是采用DEAP数据集将脑电信号进行频域分段并提取其微分熵特征,为了充分利用空间特征,结合微分熵特征将其构建为一个三维脑电特征,输入到连续卷积神经网络,并最终取得了90.24%的准确率。 提出了一种脑电特征的三维输入形式,并将其输入到连续卷积神经网络中进行情感识别。三维输入的优点是在集成多个频带的微分熵特征的同时保留电极之间的空间特征。 ———————————————— 版权声明:本文为CSDN博主「qq_3196288251」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_45874683/article/details/121356408
对应于DEAP数据集,提取其微分熵特征,计算其微分熵特征。
2021-11-16 19:07:56 6KB 微分熵 脑电情绪识别 EEG
该论文运用的卷积神经网络(CNN)和LSTM,其中CNN处理频率和空间信息,LSTM处理从CNN输出中提取时间相关性,并将两种模型进行融合。数据集采用的是脑电研究中最常用的DEAP和SEED数据集并且在两个数据集中都取得了很高的准确率。都达到了92%左右的准确率。 论文设计了一种新模型,称为四维卷积递归神经网络。该模型将多通道脑电信号的频域特征、时域特征和空间特征(频率、空间和时间信息)集成在一起,用来提高脑电情绪识别的准确率。首先,提取脑电的这三种特征,我们将不同通道的差分熵特征转换为4维结构来训练深层模型。然后,介绍了卷积神经网络(CNN)和长短时记忆(LSTM)单元的递归神经网络相结合的CRNN模型。CNN用于从4D输入的每个时间片中学习频率和空间信息,LSTM用于从CNN输出中提取时间相关性。LSTM最后一个节点的输出执行分类。该模型在受试者内部划分的SEED和DEAP数据集上都达到了最先进的性能。实验结果表明,结合脑电频域特征、时域特征和空间域特征(频率、空间和时间信息)进行脑电情感识别是有效的。
2021-11-16 14:10:49 1.77MB 脑电情绪识别 DEAP SEED CNN
包含了所有脑电领域可能用到的深度学习模型包含BIGRU,,lstm,cnn,gcn,dnn,rnn等等23个深度学习模型。 同时包含了相应模型所需要的数据处理过程所用代码。 当然也包含了最基本的读取edf文件,得到脑电信号。
2021-10-18 17:12:19 153KB 深度学习 脑电情绪识别 deap eeg
这是一个Python模块,具有许多用于时间序列分析的函数,主要用于对脑电信号的分析。 例如具有傅里叶变换,带通滤波,小波变换等函数。 同时具有脑电特征提取中最常用的将脑电信号按不同的频率分解为多个频段信号的函数。进行频域特征的分析,提取微分熵频域特征等。
2021-10-15 11:09:02 43KB DEAP 脑电情绪识别 深度学习 脑电EEG
包含百度云链接,包含完整的DEAP脑电数据集,可用于脑电情绪识别等等
2021-07-21 22:06:08 204B DEAP 深度学习 脑电情绪识别