针对传统的K-means算法对初始聚类中心的敏感很大,极易陷入局部最优值,基于遗传算法的K-means聚类算法由于个体的多样性不足而常出现早熟等现象,采用遗传模拟退火算法优化初始聚类中心点后进行K-means聚类,并提出了一种新的用于评价聚类结果的适应度函数,该函数更为准确地反映类内距离和类间距离。实验结果表明,该方法能获得更好的聚类结果。
1
为了正确判断管道是否发生泄漏,本文采用混合学习方法对网络进行训练学习。通过将管道运行参数作为神经网络的输入,管道运行状态作为神经网络的输出,实现两者的非线性映射,以此来判断输入信号是否为泄漏信号,并选用K-means聚类方法和递推最小二乘法来确定网络参数。通过用天然气管道运行的实测数据对RBF神经网络进行了训练和测试,得到结果误差在可接受的范围内,从而证明RBF神经网络的方法可用于天然气管道泄漏检测的研究。
1
c均值聚类算法matlab代码fcm_m 这是matlab代码中FCM聚类方法的一些变体。 您可以参考以下文章以进一步了解:“一种鲁棒的模糊局部信息C均值聚类算法”
2022-03-20 13:38:33 302KB 系统开源
1
实验报告——Kmeans聚类方法.docx
2022-01-23 09:15:21 182KB kmeans 聚类 数据挖掘 机器学习
1
针对图像聚类问题,提出了一种基于图像空间关系的聚类方法,采用场模型描述图像之间的空间关系,利用K-近邻思想构建图像邻域系统,聚类过程中无需手动标记特征表示的图像类别信息,只需要给定初始类别数,通过条件迭代算法(ICM)对图像进行聚类。该文通过实验分析了图像样本大小、图像特征维数、图像特征类型、初始类别标签对聚类结果的影响,通过与多种经典聚类算法进行对比,实验结果充分验证了该方法的有效性。
1
鉴于传统的??-means 聚类算法只限于处理数值型数据, 将??-means 算法扩展到分类型数据域, 提出一种分 类型数据聚类方法. 根据与每个分类属性的每个值相关的数据分布信息, 同时结合数据的纵向与横向分布来评价数 据对象与类之间的差异性, 定义了一种新的距离度量. 该方法能发现同一属性不同值间的内在关系, 并能有效地度量 对象间的差异性. 用UCI 中的数据集对所提算法进行验证, 实验结果表明了该算法具有较好的聚类效果.
1
论文研究-基于自适应权重的面板数据聚类方法.pdf,  基于二维信息的传统聚类方法并不适用于处理面板数据, 在考察面板数据多重信息特征的基础上, 基于面板数据的"绝对指标", "增量指标"及"波动指标", 重构了面板数据相似性测度的距离函数和Ward聚类算法, 提出了面板数据自适应权重聚类方法. 所提供的算法既可退化为传统的绝对量距离聚类方法, 亦可对面板数据的未来所属类别进行聚类预测. 最后, 实例显示此方法兼具有效性和灵活性.
2021-12-21 15:23:22 963KB 论文研究
1
用于单通道语音分离的深度聚类 “用于分割和分离的深度聚类判别嵌入”的实现 要求 参见 用法 在.yaml文件中配置实验,例如: train.yaml 训练: python ./train_dcnet.py --config conf/train.yaml --num-epoches 20 > train.log 2>&1 & 推理: python ./separate.py --num-spks 2 $mdl_dir/train.yaml $mdl_dir/final.pkl egs.scp 实验 配置 时代 调频 FF 毫米 FF /毫米 AVG 25 11.42 6.85 7.88 7.36 9.54 问与答 .scp文件的格式? wav.scp文件的格式遵循kaldi工具箱中的定义。 每行包含一个key value对,其中key是索引音频文件的唯一字符串,而值
2021-11-27 21:56:29 16KB pytorch speech-separation Python
1