为了提高传感器节点部署覆盖率,针对目前网络覆盖存在覆盖死角、节点冗余及不能再度优化的问题,在检测区域已知的情况下,提出基于萤火虫群优化(GSO)算法的传感器节点部署方案,并对原方案进行改进。该算法中,传感器节点等同于萤火虫,覆盖信号强度即是荧光素浓度,首先对节点进行随意初始部署,然后通过计算移动概率的大小,判断节点移动方向,最终完成节点部署。实验仿真表明,该部署方法适用于大量传感器节点部署,覆盖面积广,灵活性强。
2023-04-11 15:50:45 269KB 工程技术 论文
1
这是一个关于多目标粒子群算法,很有用,代码通用性强 这是一个关于多目标粒子群算法,很有用,代码通用性强 这是一个关于多目标粒子群算法,很有用,代码通用性强 这是一个关于多目标粒子群算法,很有用,代码通用性强
2023-04-06 21:28:22 8KB matlab
1
沙猫群优化(Sand Cat Swarm Optimization, SCSO)算法是一种受自然界沙猫行为而设计的元启发式算法。 本资源仅供学习交流,严禁用于商业用途。
2023-03-21 09:38:14 4KB matlab 启发式算法 软件/插件 算法
1
基于改进蚁群优化算法与子图演化,提出了一种新型非监督社交网络链路预测(SE-ACO)方法。该方法首先在社交网络图中确定特殊子图;然后研究子图演化以预测图中的新链接,并用蚁群优化算法定位特殊子图;最后针对所提方法使用不同网络拓扑环境与数据集进行检验。结果表明,与其他无监督社交网络预测算法相比,所提SE-ACO方法在多数数据集上的评估结果较好,且运行时间较短,这表明图形结构在链路预测算法中起重要作用。
1

为了进一步提高量子行为粒子群优化(QPSO) 算法的全局收敛性能, 有效改善算法中存在的粒子早熟问题,提出一种基于完全学习策略的改进QPSO 算法(CLQPSO). 该学习策略改变了QPSO 中局部吸引子的更新方式, 充分利用了种群的社会信息. 采用8 个测试函数对算法性能进行比较分析. 实验结果表明, 所提出的改进算法不仅收敛速度快, 而且全局收敛能力好, 收敛精度优于PSO 算法和QPSO 算法.

1
运用粒子群算法实现对几种测试函数最优解的搜寻,可对算法进行改进,提升算法的寻优性能。 粒子群算法几种改进方法: 1.权重改进:非线性权重、自适应权重等。 2.学习因子:学子因子动态调整 3.速度更新改进 4.加入新算子等等。
1
通过研究电力负荷预测中支持向量机的参数优化问题,将改进后新的粒子群算法导入支持向量机参数中,从而建立一种新的电力负荷预测模型(IPSO-SVM)。首先将支持向量机参数编码为粒子初始位置向量,然后通过对粒子个体之间信息交流、协作的分析找到支持向量机的最优参数,并针对标准粒子群算法的缺陷进行一定的改进,从而应用于电力负荷的建模与预测,最后通过仿真对比实验来测试它的性能。实验结果表明,这种新的电力负荷预测模型能够获得较高精度的电力负荷预测结果,大大减少了训练时间,能够满足电力负荷在线预测要求。
1
针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子群优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子群算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。
1
为有效避免粒子群优化算法后期收敛速度慢的问题,提高寻优能力,设计了一种以自适应方式更新粒子飞行速度的弹性粒子群优化算法,建立了水电优化调度数学模型,提出了弹性粒子群优化算法解决水电优化调度问题的实现方法,包括粒子编码设计、适应度函数设计以及弹性修正值设计,并编制了基于Matlab语言的优化程序.实例仿真结果表明:弹性粒子群优化算法是有效的;相比基本粒子群优化算法和自适应粒子群优化算法,弹性粒子群优化算法求解水电优化调度问题具有更强的全局寻优能力和更快的收敛速度.
2023-02-18 10:04:11 348KB 工程技术 论文
1