复杂网络相关SCI论文,包括小世界模型、无标度模型、局域世界模型等,研究复杂网络、系统工程、社交网络等相关领域的可以参考借鉴
2023-07-09 20:20:05 48.41MB 复杂网络 模型
1
IOCP网络模型-附件资源
2023-05-21 23:24:45 106B
1
基于pytorch实现的堆叠自编码神经网络,包含网络模型构造、训练、测试 主要包含训练与测试数据(.mat文件)、模型(AE_ModelConstruction.py、AE_Train.py)以及测试例子(AE_Test.py) 其中ae_D_temp为训练数据,ae_Kobs3_temp为正常测试数据,ae_ver_temp为磨煤机堵煤故障数据,数据集包含风粉混合物温度等14个变量 在程序中神经网络的层数和每层神经元个数没有固定,可根据使用者的输入值来构造神经网络,方便调试 autoencoder类在初始化时有三个参数,第一个是网络输入值,第二个是SAE编码过程的层数(编码、解码过程层数相同),第三个是是否添加BN层 这里为了构造方便,给每层神经元的个数与层数建立一个关系:第一层神经元的个数为2^(layer数+2),之后逐层为上一层的1/2
2023-04-13 21:52:14 15.8MB pytorch 堆叠自编码 神经网络 SAE
1
LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅他们的论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的tensorflow,但我认为它可以在版本1.12以上的tensorflow中正常工作。 其他必需的软件包,您可以通过以下方式安装它们 pip3 install -r requirements.txt
1
1.1 模型介绍 1.2模型结构 1.3 模型特性 2.1 模型介绍 2.2 模型结构 2.3 模型特性 3.1 模型介绍 3.2 模型结构 3.3 模型特性
2023-04-03 13:38:34 13.06MB 神经网络
1
这是介绍径向基神经网络的视频,非常简单适用,适合从来不知道神经网络为何物的菜鸟。由于本人权限问题,只能分成5部分上传。为了方便大家下载,只有第一部分收资源分。这是第一部分。
2023-04-01 17:08:13 9.54MB RBF 径向基 神经网络
1
一本非常详细又实用的caffe官方教程,特别适合刚刚入门的初学者,详细介绍了caffe各个层,还有如何进行训练和推理,是大家学习人工智能特别是caffe的必备教程。
2023-03-29 21:04:59 2.18MB 人工智能 caffe
1
复杂网络中常用的ER网络、BA网络、WS网络等常用网络的,Matlab代码 复杂网络中常用的ER网络、BA网络、WS网络等常用网络的,Matlab代码
2023-03-27 15:48:08 10KB 复杂网络 网络模型 Matlab代码
1
简介:该垃圾分类项目主要在于对各种垃圾进行所属归类,本次项目采用keras深度学习框架搭建卷积神经网络模型实现图像分类,最终移植在树莓派上进行实时视频流的垃圾识别。 前期:主要考虑PC端性能,并尽可能优化模型大小,训练可采用GPU,但调用模型测试的时候用CPU运行,测试帧率和准确性(测试10张左右图像的运行时间取平均值或实时视频流的帧率)。 后期:部署在树莓派端,在本地进行USB摄像头实时视频流的垃圾分类(归类)。 框架语言: keras+python。 PC端: Keras: 2.2.0 Opencv: 3.4 Python: 3.6 Numpy:1.16
2023-03-26 19:11:03 4.17MB 树莓派 keras 垃圾识别 深度学习
1
pytorch图注意网络 这是Veličković等人提出的图注意力网络(GAT)模型的火炬实施。 (2017, )。 回购协议最初是从分叉的。 有关GAT(Tensorflow)的官方存储库,请访问 。 因此,如果您在研究中利用pyGAT模型,请引用以下内容: @article{ velickovic2018graph, title="{Graph Attention Networks}", author={Veli{\v{c}}kovi{\'{c}}, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Li{\`{o}}, Pietro and Bengio, Yoshua}, journal={International Conference on Learning
1