建立完回归模型后,还需要验证咱们建立的模型是否合适,换句话说,就是咱们建立的模型是否真的能代表现有的因变量与自变量关系,这个验证标准一般就选用拟合优度。
拟合优度是指回归方程对观测值的拟合程度。度量拟合优度的统计量是判定系数R^2。R^2的取值范围是[0,1]。R^2的值越接近1,说明回归方程对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归方程对观测值的拟合程度越差。
拟合优度问题目前还没有找到统一的标准说大于多少就代表模型准确,一般默认大于0.8即可
拟合优度的公式:R^2 = 1 – RSS/TSS
注: RSS 离差平方和 ; TSS 总体平方和
理解拟合优度的公式前,需要先了
1