Abstract—Clustering face images according to their latent identity has two important applications: (i) grouping a collection of face images when no external labels are associated with images, and (ii) indexing for efficient large scale face retrieval. The clustering problem is composed of two key parts: representation and similarity metric for face images, and choice of the partition algorithm. We first propose a representation based on ResNet, which has been shown to perform very well in image classification problems. Given this representation, we design a clustering algorithm, Conditional Pairwise Clustering (ConPaC), which directly estimates the adjacency matrix only based on the similarities between face images. This allows a dynamic selection of number of clusters and retains pairwise similarities between faces. ConPaC formulates the clustering problem as a Conditional Random Field (CRF) model and uses Loopy Belief Propagation to find an approximate solution for maximizing the posterior probability of the adjacency matrix. Experimental results on two benchmark face datasets (LFW and IJB-B) show that ConPaC outperforms well known clustering algorithms such as k-means, spectral clustering and approximate Rank-order. Additionally, our algorithm can naturally incorporate pairwise constraints to work in a semi-supervised way that leads to improved clustering performance. We also propose an k-NN variant of ConPaC, which has a linear time complexity given a k-NN graph, suitable for large datasets. Index Terms—face clustering, face representation, Conditional Random Fields, pairwise constraints, semi-supervised clustering.
2022-02-27 19:55:52 15.95MB 人脸 聚类
1
LSL最小二乘格型滤波器讲解 ppt,实现整个算法的流程,深入浅出的讲解LSL的迭代递推算法
2022-02-25 11:32:39 777KB LSL 最小二乘 算法 格型滤波器
1
你知道程序员的十大基础实用算法及其讲解吗?一起来看看
2022-02-21 10:22:40 97KB 程序员 实用算法 讲解 文章
1
PID算法的讲解,通过生动的例子对P,对I,对D 的含义详细讲解。及对PID具体算法的讲解
2022-02-19 23:15:34 65KB PID
1
大数据十大经典算法讲解,大数据处理的入门级算法,受用!
2022-02-09 21:07:58 4.58MB 经典算法
1
带canopy预处理的kmeans算法 (1)将数据集向量化得到一个list后放入内存,选择两个距离阈值:T1和T2。  (2)从list中任取一点P,用低计算成本方法快速计算点P与所有Canopy之间的距离(如果当前不存在Canopy,则把点P作为一个Canopy),如果点P与某个Canopy距离在T1以内,则将点P加入到这个Canopy;  (3)如果点P曾经与某个Canopy的距离在T2以内,则需要把点P从list中删除,这一步是认为点P此时与这个Canopy已经够近了,因此它不可以再做其它Canopy的中心了;  (4)重复步骤2、3,直到list为空结束
2022-02-04 06:25:38 4.58MB 大数据
1
(2)矩阵换位法 把明文中的字母按给定的顺序安排在一矩阵中,然后用另一种顺序选出矩阵的字母来产生密文。
1
PageRank的随机浏览模型 假定一个上网者从一个随机的网页开始浏览,上网者不断点击当前网页的链接开始下一次浏览。但是,上网者最终厌倦了,开始了一个随机的网页。随机上网者用以上方式访问一个新网页的概率就等于这个网页PageRank值。 ① 这种随机模型更加接近于用户的浏览行为; ② 一定程度上解决了rank leak和rank sink的问题; ③ 保证pagerank具有唯一值。 *
2021-12-28 23:22:21 2.24MB pagerank
1
马尔可夫链收敛定理 *
2021-12-23 00:16:56 2.24MB pagerank
1
SPFA的讲解、有一个简单的例子模拟了算法执行的整个过程、 代码实现及打印最淡路径
2021-12-22 19:30:25 269KB SPFA算法
1