《Simulink仿真模型复现:锂离子电池SOC主动均衡控制策略研究与实现》,锂离子电池SOC主动均衡控制仿真模型的硕士论文复现:基于差值、均值和标准差的均衡算法研究与应用,Simulink锂离子电池SOC主动均衡控制仿真模型 硕士lunwen复现 锂离子电池组SOC均衡,多电池组均衡控制,双向反激变器均衡, 硕士lunwen复现,均衡算法基于差值、均值和标准差 有防止过放和过充环节 附参考的硕士lunwen“锂离子电池SOC估算与主动均衡策略研究” 默认2016版本。 ,锂离子电池SOC; 主动均衡控制; 仿真模型; 硕士论文复现; 均衡算法; 差值均衡; 均值均衡; 标准差均衡; 防止过放过充; 2016版本。,基于Simulink的锂离子电池SOC主动均衡控制模型复现:差值、均值与标准差均衡算法研究与应用
2025-05-03 22:19:05 82KB ajax
1
### 基于深度学习的车辆重识别算法研究与系统实现 #### 摘要精析 本研究针对当前交通管理中的难题——车辆重识别,采用深度学习技术探索了一种有效的解决方案。随着城市化进程的加快及车辆数量的激增,传统的人工监控方式已无法满足日益增长的需求,智能化交通系统的建设显得尤为迫切。其中,车辆重识别技术是构建智能交通体系的关键技术之一,它能够在不同的摄像头视角下准确地识别同一辆车,这对于智能安全防范、车辆跟踪等应用场景至关重要。 然而,当前基于车牌识别的技术虽然可靠,但也面临着诸多挑战,如车牌遮挡、伪造车牌以及个人隐私保护等问题。因此,发展无需依赖车牌信息的车辆重识别技术成为研究的重点方向之一。本文旨在探讨如何利用深度学习技术提取车辆的外观特征,从而实现高效的车辆重识别。 #### 核心问题及解决策略 本研究主要围绕两大核心问题展开: 1. **基于局部特征的方法通常忽视了不同局部特征之间的内在联系**,这导致模型在处理细节方面的能力较弱,难以区分那些外观极为相似的车辆。 2. **传统的注意力机制未能充分考虑特征通道间的相关性**,存在特征冗余现象,降低了特征表达的质量,进而影响了车辆重识别的准确性。 针对第一个问题,作者设计了两种基于局部特征的深度学习网络模型: - **基于LSTM的局部特征提取网络**:利用LSTM(长短时记忆)网络的记忆和遗忘特性,对图像中的局部特征进行序列化建模,建立各个局部特征之间的依赖关系,以此增强模型对于局部细节的捕捉能力。 - **基于图卷积的局部特征提取网络**:通过图卷积网络处理图像的局部特征,实现特征之间的信息融合,进而提取出更为精细的空间结构特征。这种网络能够更好地捕捉图像中各局部特征之间的空间关联性。 针对第二个问题,研究团队提出了一种新的注意力模块——基于通道相关性的注意力模块(CCSAM),该模块通过构建通道相关性矩阵来提升每个特征通道的表示能力,从而改善全局特征的质量。这一改进有效地提高了车辆重识别的准确性。 #### 实验结果与系统实现 通过在两个公开的数据集上的实验验证,这两种局部特征提取网络以及CCSAM注意力模块的有效性和合理性得到了充分证明。实验结果表明,这些方法显著提升了车辆重识别的性能。 此外,基于以上研究成果,研究团队还开发了一个基于深度学习的车辆智能重识别系统。该系统不仅能够实现车辆的目标检测,还能完成指定车辆的重识别和轨迹绘制,并支持跨摄像头视频之间的车辆重识别功能。这一成果不仅具有重要的学术意义,也为实际应用中的智能交通系统提供了有力的技术支持。 #### 结论与展望 《基于深度学习的车辆重识别算法研究与系统实现》论文深入探讨了如何利用深度学习技术解决车辆重识别中的关键问题,并成功开发了一套高效的车辆重识别系统。未来的研究可进一步优化现有的算法模型,拓展其在更多复杂场景下的应用潜力,为智慧城市建设和智能交通系统的完善做出贡献。
2025-05-02 12:03:40 7.56MB 深度学习 毕业设计
1
针对无线传感器网络中节点配置问题,目前已提出很多种不同的算法。这些算法的基本思想大都是把传感器节点分为不同的覆盖集,使得其中每个覆盖集能够监控到所有的目标。 本篇论文针对一个新颖,高效的覆盖算法,分析了该算法的设计原理,在此基础上作了改进,并将其实现,对不同情况下该算法所呈现的结果进行了讨论。该算法的特点在于通过一个成本函数来选择覆盖集里的传感器,成本函数的参数包括三个因素:传感器监控目标的能力、与较难监控目标的联系及传感器的剩余电池寿命。本文利用三个权重来表示这三个因素,探索了在三个因素发生变化时,该算法所产生的不同结果,得出通过合理控制三个权重的值,可以得到符合于实际情况的最佳结果,从而达到延长无线传感器网络寿命的目的。 1. 引言 无线传感器网络(WSN, Wireless Sensor Networks)是由大量部署在特定区域内的小型设备——传感器节点组成,这些节点具有数据采集、处理和传输能力。WSN广泛应用于环境监测、军事侦察、健康监护等多个领域。然而,由于节点资源有限,特别是能源有限,如何有效地利用节点进行目标覆盖,确保网络的持续稳定运行,是WSN研究中的关键问题。本文关注的是基于覆盖集的WSN覆盖率算法,旨在通过优化节点分配策略,提高网络覆盖效率,延长网络寿命。 1.1 研究背景 随着物联网技术的发展,WSN的应用越来越广泛。然而,由于节点的分布不均和能量限制,网络覆盖率成为一个挑战。传统的随机部署策略往往导致覆盖不全面或资源浪费。因此,设计一种能动态调整覆盖策略的算法,使每个目标都能被至少一个传感器节点有效监控,成为WSN研究的热点。 1.2 研究意义 优化WSN的覆盖率不仅可以提高数据采集的准确性和可靠性,还能减少不必要的能量消耗,延长网络生命周期。通过智能的覆盖算法,可以降低节点的部署密度,节省硬件成本,同时保持服务的质量。 1.3 研究现状 现有的覆盖算法主要分为静态和动态两类。静态算法在部署初期确定节点位置,难以适应环境变化;动态算法则根据环境和网络状态实时调整,更适应实际应用。本文研究的是一种新型动态覆盖算法,它以覆盖集为基础,通过成本函数来选择最佳传感器节点。 2. 问题模型 2.1 覆盖集介绍 覆盖集是WSN覆盖问题的核心概念,它是一组传感器节点,它们协同工作,共同覆盖整个监控区域。每个覆盖集应保证区域内所有目标的覆盖,以避免盲点。 2.2 点覆盖及面覆盖 点覆盖是指每个传感器节点仅需覆盖其周围一小片区域,而面覆盖则要求节点能覆盖更大的区域。本文算法兼顾点覆盖和面覆盖,以实现全方位的有效监控。 3. 算法设计原理 3.1 参数 本文提出的算法引入了三个关键参数:传感器的监控能力、与难监控目标的联系以及传感器的剩余电池寿命。这三者通过权重系数量化,形成成本函数,用于指导节点的选择。监控能力反映了节点的感知范围和精度,与难监控目标的联系度则考虑了某些特定目标的重要性,剩余电池寿命关乎节点的生存时间。 3.2 算法流程 根据节点的位置和覆盖范围划分覆盖集;然后,计算每个节点的成本函数,选取成本最低的节点进入覆盖集;不断迭代优化覆盖集,直到所有目标都被有效覆盖。 4. 改进与实现 对原算法进行改进,引入动态调整权重的机制,使算法能更好地适应环境变化。通过模拟实验,探讨不同权重设置对算法性能的影响,找出最佳的权重组合,以实现最优的覆盖效果和网络寿命。 5. 结果分析 通过对多种场景的仿真,本文深入分析了算法的性能,包括覆盖率、能源效率和网络生存时间,验证了改进算法的有效性和优越性。 基于覆盖集的WSN覆盖率算法通过综合考虑多种因素,实现了高效且节能的目标覆盖。通过合理的参数调整和优化,可以显著提升WSN的工作效能,为WSN的实用化提供了理论和技术支持。未来的研究方向可能包括进一步优化成本函数,考虑更多实际因素,以及将算法应用于更复杂的网络环境中。
1
六自由度机械臂RRT路径规划与梯形速度规划的避障实现:附详细注释与改进动图曲线分析,六自由度机械臂RRT路径规划与梯形速度规划实现避障的算法研究及曲线绘制分析,六自由度机械臂RRT路径规划算法梯形速度规划规划,实现机械臂避障。 并绘制相关曲线: 1.经过rrt算法规划得到的路径; 2.关节角度变化曲线、关节速度曲线; 3.机械臂避障动图。 代码有详细注释,自己学习后进行了标注和改进。 ,RRT路径规划算法; 机械臂避障; 梯形速度规划; 关节角度变化曲线; 关节速度曲线; 路径规划结果; 改进后的代码注释。,基于RRT算法的六自由度机械臂避障路径规划与速度规划
2025-04-30 17:21:50 452KB kind
1
DBSCAN聚类算法是一种基于密度的空间聚类算法,它通过考察数据点周围的邻域来识别高密度区域,将紧密相连的点归为同一类。尽管DBSCAN在处理大型数据库和发现任意形状的簇方面具有优势,但它在效率和准确性方面仍有一些局限性。为了提升DBSCAN算法的性能,RIME技术应运而生,该技术着重于提高数据挖掘过程中的性能与准确度。 RIME技术通过引入一种新的距离度量和优化后的聚类策略,改进了DBSCAN算法的初始核心对象选取过程和簇的扩展过程。在数据点的邻域定义上,RIME可能采用了更有效的计算方式,从而减少了计算复杂度。此外,RIME还可能在确定簇内点和噪声点方面做出了调整,使得算法在不同密度的数据集上都能表现出较好的适应性和稳定性。 在实际应用中,RIME优化的DBSCAN算法能够在大数据时代背景下,为数据挖掘和聚类分析提供更加精确和高效的支持。由于大数据时代数据集的规模通常非常庞大,其中可能包含有噪声的数据点,也可能存在复杂的分布特征。因此,传统的数据挖掘方法在处理这类数据时往往会遇到性能瓶颈。RIME优化的DBSCAN算法可以更有效地处理大规模数据集,同时保持聚类的质量,为相关领域的研究和应用提供了重要的技术支撑。 从给出的文件列表中可以看出,相关的文章和文件主题都围绕着RIME优化的DBSCAN聚类算法以及其在数据挖掘领域的应用。这些文件包含了从引言、深度探索到实际应用分析的多个角度,涉及了文本、图像和超文本格式。通过这些资料的阅读与分析,研究人员能够深入了解RIME技术如何改善DBSCAN聚类算法,并将其应用于现实世界的大数据分析中。 RIME技术的提出和应用,是为了解决DBSCAN聚类算法在处理大数据时所面临的效率和准确性问题。通过改进距离度量和聚类策略,优化后的DBSCAN算法能更好地适应大数据时代的需求,为数据挖掘领域带来更为精准和高效的数据处理能力。相关研究人员可以通过分析给定的文件资料,全面掌握RIME优化DBSCAN聚类算法的理论基础和实践应用,进一步推动该领域的技术进步。
2025-04-28 15:48:01 160KB rpc
1
基于RRT的路径规划优化及RRT改进策略探讨,改进RRT路径规划算法研究:优化与性能提升的探索,改进RRT 路径规划 rrt 改进 —————————————— ,改进RRT; 路径规划; rrt 改进,改进RRT路径规划算法研究 在现代机器人技术与自动化领域中,路径规划算法扮演着至关重要的角色,它直接影响着机器人的移动效率与执行任务的能力。快速随机树(Rapidly-exploring Random Tree,简称RRT)算法因其在高维空间中的高效性,成为了研究者们关注的焦点。RRT算法的基本思想是通过随机采样的方式构建出一棵不断延伸的树,逐步覆盖整个空间,最终找到一条从起点到终点的路径。 然而,传统的RRT算法在处理复杂环境或具有特定约束条件的问题时,可能存在效率不高、路径质量不佳等问题。因此,对RRT算法的优化与改进成为了学术界和工业界研究的热点。优化的方向主要包括提升算法的搜索效率、降低路径长度、提高路径质量、增强算法的实时性以及确保算法的鲁棒性等方面。 在探索路径规划算法的改进之路上,研究者们提出了各种策略。比如,通过引入启发式信息来引导采样的过程,使得树能够更快地向着目标区域生长;或者通过优化树的扩展策略,减少无效的探索,从而提高算法的效率。此外,还有一些研究集中在后处理优化上,即在RRT算法得到初步路径后,通过一些路径平滑或者优化的技术来进一步提升路径的质量。 针对特定的应用场景,如机器人在狭窄空间中的导航、多机器人系统的协同路径规划等,研究人员也提出了许多创新的改进方法。例如,可以在RRT的基础上结合人工势场法来处理局部路径规划中的动态障碍物问题,或者设计特定的代价函数来考虑机器人的动力学特性。 在研究的过程中,学者们还开发了许多基于RRT算法的变体。例如,RRT*算法通过引入回溯机制来改进路径,使得最终的路径不仅连接起点和终点,还能在保持连通性的同时,追求路径的最优化。还有RRT-Connect算法、Bi-directional RRT算法等,这些变体在保证RRT算法的基本特性的同时,通过一些策略上的调整来提升算法性能。 路径规划算法的研究领域充满了挑战与机遇。RRT算法及其改进策略的研究不仅为机器人导航提供了解决方案,也为其他领域如无人机飞行路径规划、智能车辆的自动驾驶等提供了借鉴。随着计算机技术的发展和算法的不断进步,我们可以预期未来的路径规划算法将会更加智能、高效和鲁棒。
2025-04-25 09:46:06 1.81MB rpc
1
《基于改进动态窗口DWA模糊自适应调整权重的路径规划算法研究及其MATLAB实现》,《基于改进动态窗口DWA的模糊自适应权重调整路径规划算法及其MATLAB实现》,基于改进动态窗口 DWA 模糊自适应调整权重的路径基于改进动态窗口 DWA 模糊自适应调整权重的路径规划算法 MATLAB 源码+文档 《栅格地图可修改》 基本DWA算法能够有效地避免碰撞并尽可能接近目标点,但评价函数的权重因子需要根据实际情况进行调整。 为了提高DWA算法的性能,本文提出了一种改进DWA算法,通过模糊控制自适应调整评价因子权重,改进DWA算法的实现过程如下: 定义模糊评价函数。 模糊评价函数是一种能够处理不确定性和模糊性的评价函数。 它将输入值映射到模糊隶属度,根据规则计算输出值。 在改进DWA算法中,我们定义了一个三输入一输出的模糊评价函数,输入包括距离、航向和速度,输出为权重因子。 [1]实时调整权重因子。 在基本DWA算法中,权重因子需要根据实际情况进行调整,这需要人工干预。 在改进DWA算法中,我们通过模糊控制实现自适应调整,以提高算法的性能。 [2]评估路径。 通过路径的长度和避障情况等指标评估路
2025-04-09 00:13:40 1.05MB rpc
1
"OpenCV与Qt框架下,智能卡尺工具的设计与实现:带X、Y及角度纠偏的图像处理与形状匹配算法研究",基于OpenCV与QT的卡尺工具:工具跟随、精准定位、自动纠偏及图像处理全套源码与学习资料,基于opencv与qt开发的卡尺工具,卡尺工具,具有工具跟随功能,找线找圆工具可以根据形状匹配位置定位实现带X、Y以及角度偏差的自动纠偏,图像采集,图像处理,卡尺工具,找线,找圆,颜色检测,模板匹配,形状匹配,海康工业相机采集+基于形状的模板匹配界面,提前说明,形状匹配算法和找线找圆算法封装成dll直接调用的,其他都是源码,是不错的学习资料,程序资料 ,基于opencv与qt开发; 卡尺工具; 工具跟随功能; 形状匹配; 定位; 自动纠偏; 图像采集; 图像处理; 找线; 找圆; 颜色检测; 模板匹配; 海康工业相机采集; 形状匹配算法封装dll; 程序资料,OpenCV与Qt卡尺工具:图像处理与形状匹配的智能解决方案
2025-04-08 11:45:46 230KB
1
基于Matlab的局部路径规划算法研究:结合阿克曼转向系统与DWA算法的车辆轨迹优化与展示,动态、静态障碍物局部路径规划(matlab) 自动驾驶 阿克曼转向系统 考虑车辆的运动学、几何学约束 DWA算法一般用于局部路径规划,该算法在速度空间内采样线速度和角速度,并根据车辆的运动学模型预测其下一时间间隔的轨迹。 对待评价轨迹进行评分,从而获得更加安全、平滑的最优局部路径。 本代码可实时展示DWA算法规划过程中车辆备选轨迹的曲线、运动轨迹等,具有较好的可学性,移植性。 代码清楚简洁,方便更改使用 可在此基础上进行算法的优化。 ,动态障碍物; 静态障碍物; 局部路径规划; MATLAB; 自动驾驶; 阿克曼转向系统; 车辆运动学约束; 几何学约束; DWA算法; 轨迹评分; 实时展示; 代码简洁。,基于DWA算法的自动驾驶局部路径规划与车辆运动学约束处理(Matlab实现)
2025-03-31 22:32:23 132KB 哈希算法
1
MATLAB环境下基于电气热耦合的综合能源系统优化调度模型详解:考虑电网、热网与气网协同优化与算法研究,MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优化调度 电气热耦合 参考文档:自编文档,非常细致详细 仿真平台:MATLAB YALMIP+cplex gurobi 主要内容:代码主要做的是一个考虑电网、热网以及气网耦合调度的综合能源系统优化调度模型,考虑了电网与气网,电网与热网的耦合,算例系统中,电网部分为10机39节点的综合能源系统,气网部分为比利时20节点的配气网络,潮流部分电网是用了直流潮流,气网部分也进行了线性化的操作处理,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均有可靠来源 ,综合能源系统; 优化调度; 电气热耦合; 耦合调度模型; 潮流计算; 直流潮流; 线性化处理; 代码质量; 注释; 模块子程序。,MATLAB仿真:电-气-热综合能源系统耦合优化调度模型
2025-03-31 21:30:25 571KB csrf
1