DDPGforRoboticsControl 这是名为深度确定性策略梯度(DDPG)的深度强化学习算法的实现,用于训练4自由度机械臂以达到移动目标。 动作空间是连续的,学习的代理会输出扭矩以使机器人移动到特定的目标位置。 环境 一个包含20个相同代理的,每个代理都有其自己的环境副本。 在这种环境下,双臂可以移动到目标位置。 对于代理人的手在目标位置中的每一步,将提供+0.1的奖励。 因此,座席的目标是在尽可能多的时间步中保持其在目标位置的位置。 观察空间由33个变量组成,分别对应于手臂的位置,旋转,速度和角速度。 每个动作是一个带有四个数字的向量,对应于适用于两个关节的扭矩。 动作向量中的每个条目都应为-1和1之间的数字。 解决环境 您的特工平均得分必须为+30(超过100个连续剧集,并且超过所有特工)。 具体来说,在每个情节之后,我们将每个代理商获得的奖励加起来(不打折),以获得每个
2021-04-29 11:38:55 20.38MB JupyterNotebook
1
DDPG_TF2 很难在TF2中找到简单整洁的DDPG实现,因此我做了一个。 DDPG DDPG是一种无模型的非策略算法,可在连续动作空间中学习Q函数和策略。 它受Deep Q Learning的启发,可以看作是连续acion空间上的DQN。 它利用政策外数据和Bellman方程来学习Q函数,然后使用Q函数来推导和学习政策。 在DDPG的此实现中,一开始执行n次纯探索(由rand_steps参数指定)。 通过在整个范围内均匀分布来选择动作。 主要特点: 随机(深度)模型估计可提供连续(无限)的动作空间。 使用噪声过程(例如, Ornstein–Uhlenbeck过程)进行动作空间探索。 使用经验重播可以稳定地学习以前的经验。 演员和评论家结构 在演员和评论家网络中使用目标模型(通过Polyak平均进行权重转移)。 使用Bellman方程描述每对<状态,动作>的最佳q值函数。
2021-03-10 21:36:19 8KB Python
1
深度增强学习算法的PyTorch实现(策略梯度/生成对抗模仿学习)
2020-04-13 03:17:09 5.41MB Python开发-机器学习
1