基于卡尔曼滤波的风速序列短期预测方法
2021-03-17 10:06:40 418KB 研究论文
1
我们用了两种算法对PJM某区电力负荷进行超短期预测。ARIMA算法预测速度较快,平均误差在3%以内,特别适合这种超短期负荷预测,而小波分析+BP神经网络算法是一种适应性比较广的算法,在此次超短期负荷预测中它的平均误差在7%以内,预测时间相对更长。 此程序由华北电力大学电力专业学生编写,采用了VB、MATLAB混合编程(VB的界面,MATLAB的内核),利用了2种算法实现电力负荷超短期预测,这2种方法都是当前较先进实用的算法,十分有启发性。
2019-12-21 18:58:11 8.95MB ARIMA 小波分析 BP神经网络 短期预测
1