在IT领域,目标检测和跟踪是计算机视觉中的关键任务,广泛应用于智能监控、自动驾驶、无人机导航等场景。本文将深入探讨“yolov5车辆、行人目标跟踪与检测”这一主题,结合“deep_sort”算法,揭示其在目标识别与追踪上的应用。 YOLO(You Only Look Once)是一种实时目标检测系统,最初由Joseph Redmon等人于2016年提出。YOLOv5是YOLO系列的最新版本,以其快速、准确和易于训练的特性而受到业界欢迎。它采用单阶段检测策略,直接预测边界框和类别概率,大大简化了传统两阶段检测器如Faster R-CNN的流程。YOLOv5通过优化网络结构、引入更高效的特征提取器以及自适应锚框等改进,进一步提升了检测性能。 在YOLOv5中,车辆和行人的检测可以通过预训练模型实现。这些模型通常是在大规模标注数据集(如COCO或VOC)上训练得到的,包含了丰富的类别,包括车辆和行人。用户可以下载这些预训练模型,并在自己的图像或视频数据上进行微调,以适应特定场景的需求。 接下来,我们讨论目标跟踪。在视频序列中,目标跟踪是为了在连续帧间保持对同一对象的关注,即使该对象有遮挡、形变、光照变化等情况。DeepSort是一种基于深度学习的多目标跟踪方法,它结合了特征匹配、卡尔曼滤波和马尔科夫随机场模型。DeepSort的核心在于使用特征距离来计算目标之间的相似性,这通常由预训练的卷积神经网络(如MOSSE或DeepCos)提供。它能够计算出具有持久性的特征向量,即使目标短暂消失后也能重新识别出来。 在本项目中,“unbox_yolov5_deepsort_counting-main”可能是一个包含代码和配置文件的项目目录,用于整合YOLOv5和DeepSort的功能。用户可以通过运行这个目录下的脚本来实现车辆和行人的实时检测与跟踪。在这个过程中,YOLOv5首先对每一帧进行检测,生成目标框,然后DeepSort接手进行目标跟踪,为每个目标分配唯一的ID,以便在连续的帧中追踪它们的位置。 总结来说,"yolov5车辆、行人目标跟踪与检测"是一个利用先进计算机视觉技术的实用案例。YOLOv5作为高效的目标检测工具,负责找出图像中的车辆和行人,而DeepSort则确保在视频中连续跟踪这些目标。这种组合在安全监控、交通管理等领域有着广泛的应用前景。通过深入理解并实践这样的项目,我们可以提升对目标检测和跟踪技术的理解,为开发更加智能的视觉应用打下坚实基础。
2025-04-23 19:02:15 596.89MB 目标跟踪
1
在计算机视觉领域,目标检测、实例分割和人体姿态估计是三个关键的技术,它们在自动驾驶、监控分析、视频处理等应用场景中发挥着重要作用。基于yolov8的框架,我们可以实现这些功能并进行高效的实时处理。这里我们将深入探讨这些知识点。 **一、目标检测** 目标检测(Object Detection)是计算机视觉的基础任务之一,旨在识别图像中的物体并确定其位置。YOLO(You Only Look Once)系列是快速目标检测算法的代表,由Joseph Redmon等人提出。YOLOv8是对前几代YOLO的改进版本,它可能包括更优化的网络结构、更快的推理速度以及更高的检测精度。YOLOv8通过将图像划分为网格,并预测每个网格中的边界框和类别概率,来实现对多个目标的同时检测。 **二、实例分割** 实例分割(Instance Segmentation)是目标检测的进一步扩展,它不仅指出图像中有哪些物体,还能区分同一类别的不同物体。在YOLOv8的基础上,可能采用了Mask R-CNN或其他实例分割技术,对每个检测到的目标提供像素级别的分割掩模,从而实现精确到个体的分割。 **三、人体姿态估计** 人体姿态估计(Human Pose Estimation)是指识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一任务在运动分析、动作识别等领域具有广泛应用。结合YOLOv8的检测能力,可以先定位人物,然后利用专门的人体姿态估计算法(如OpenPose或者HRNet)来估计各个关节的位置。 **四、目标跟踪** 目标跟踪(Object Tracking)是指在连续的视频帧中,一旦发现目标,就持续追踪其运动轨迹。在YOLOv8的基础上,可能会集成如BoTSORT或ByteTrack这样的跟踪算法。这些跟踪器能够跨帧关联检测到的物体,保持对目标的连续追踪,即使目标暂时被遮挡也能恢复跟踪。 **五、RTSP视频源** RTSP(Real Time Streaming Protocol)是一种用于流媒体传输的协议,常用于实时视频流的处理。在YOLOv8的应用场景中,通过RTSP输入视频源,使得系统可以直接处理来自网络摄像头或者其他实时视频流的数据,实现对实时视频的检测、分割和跟踪。 总结来说,基于YOLOv8的系统集成了目标检测、实例分割、人体姿态估计和目标跟踪四大核心功能,支持RTSP视频源,这使得它能够广泛应用于安全监控、智能交通、体育分析等多个领域。提供的代码和模型使得用户可以快速部署和应用这些技术,无需从零开始构建整个系统。通过深入理解这些技术,开发者和研究人员能够在实际项目中实现更加智能和精准的视觉分析。
2025-04-21 14:39:53 79.34MB 目标检测 实例分割 人体姿态 目标跟踪
1
1、tiny_yolov4文件夹: 目标检测算法源码,包括:网络搭建、训练好的权重、解码文件、预测文件。 为提升算法速度,我摒弃了YOLOv4框架而采用了Tiny_YOLOv4框架,检测精度虽然有所下降,但每帧推理速度从0.17s提升至0.03s。 2、predict.py: 用于验证目标检测的效果,可单独独立出来运行,与目标跟踪无关。 3、kalman.py: 卡尔曼滤波器,基于恒速运动模型,预测下一帧目标物体的位置。 4、tracker.py: 存储每个时刻不同目标物体的状态,管理目标跟踪整个系统运作过程。 5、main.py: 整个项目的运行入口,直接运行main.py,就可以调用Tiny_YOLOv4 + Sort,处理视频流信息,完成目标跟踪、车流量统计。 6、MVI_39211、MVI_39031:DATRAC数据集测试集的两个视频,交通路段车流量画面。demo1、demo2:调用目标跟踪算法,车流量的每帧统计结果。
2024-09-11 14:58:13 935.7MB
1
目标跟踪+YOLOv8-deepsort 实现智能车辆跟踪+计数系统源码(高分项目).zip 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 目标跟踪+YOLOv8-deepsort 实现智能车辆跟踪+计数系统源码(高分项目).zip 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 目标跟踪+YOLOv8-deepsort 实现智能车辆跟踪+计数系统源码(高分项目).zip 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 目标跟踪+YOLOv8-deepsort 实现智能车辆跟踪+计数系统源码(高分项目).zip 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 目标跟踪+YOLOv8-deepsort 实现智能车辆跟踪+计数系统源码(高分项目).zip 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 目标跟踪+YOLO
适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
2024-05-28 12:49:12 133.66MB 毕业设计
1
yolov5 yolov5_使用yolov5+deepsort进行无人机目标跟踪
2024-05-18 15:11:55 83.69MB yolov5 deepsort 目标检测
1
基于ZYNQ新起点V1,摄像头采用OV5640,使用帧间差分法进行目标跟踪。视频输出采用VGA接口。
2024-04-30 14:09:09 14.28MB 目标跟踪 FPGA
1
Alpha-beta-gamma滤波器是一种用于对时间序列数据进行滤波的算法。它综合了三个滤波器的优点,可以在一定程度上抑制噪声,并且对快速变化的信号具有较好的响应速度。 Alpha滤波器可以用于平滑数据,减少瞬时波动。Beta滤波器可以用于响应中等频率的变化,适用于去除缓慢变化的趋势。Gamma滤波器可以对快速变化的信号进行平滑,有利于提取高频信息。 将这三个滤波器组合起来,可以在不同时间尺度上对数据进行平滑处理,从而获得更准确的结果。使用alpha-beta-gamma滤波器需要选择合适的滤波器参数,根据实际情况进行调整。 alpha-beta-gamma滤波器在最基础的alpha-beta滤波器上进行一定的改进,加入了另一个调整参数gamma,使得该滤波器可以对匀加速运动的目标进行跟踪和滤波,其效果明显优于普通的alpha-beta滤波器,了解此种滤波器对于后续的卡尔曼滤波器具有一定的帮助,本程序对其进行了MATLAB仿真,程序正确,结果较好,大家可以自行下载查看学习
2024-04-27 16:57:16 2KB 目标跟踪
1
在雷达系统当中,跟踪的应用种类很多,包括但不限于`目标定位、自主导航、天气预测、空中交通管制和军事应用`等等,那么**如何获得更加准确的关于目标数据**就成为一个至关重要的问题。,`跟踪滤波器`为一种较好的方式,跟踪滤波器的**主要目的**就是`在充满不确定性的情况下,获得更为精准的目标的位置信息、速度信息、加速度信息等`,其中的alpha-beta滤波器为最基础的一种用于简单目标跟踪滤波的滤波器类型,了解此种滤波器对于后续的卡尔曼滤波器具有一定的帮助,本程序对其进行了MATLAB仿真,程序正确,结果较好,大家可以自行下载查看学习
1
matlab集成c代码 ECO_C_Edition 一、目标 冯如杯目标跟踪,将ECO算法转换为C语言版本 二、Guideline 1,完整读一遍代码,勾勒出算法框架 2,分工:feature extraction部分和implemention部分。后面implemention部分比较复杂,可以多找两个人来读和写。 3,找出所有的依赖于第三方的库和代码,比如各种滤波用到的fft什么的之类的,找到用c的话用哪些库来代替(比如c下面有很高效的fftw算法库可以用) 4,按照分工,从上至下一个模块一个模块用c来重新,并进行模块测试,结果跟matlab来对比,确保模块功能正确 5,把各个模块进行集成。 三、测试 使用MATLAB的unit test功能 四、Github操作 使用Github Desktop,修改后提交使用PUSH,获得更新使用PULL 五、运行 1.Download matconvnet ZIP file from and unpack it in the external_libs/matconvnet/ folder of the repository. 2.Downlo
2024-04-27 15:38:14 7.98MB 系统开源
1