高分1号(GF-1)卫星遥感影像已经成为土地利用和覆盖的重要数据源。文中通过对所选样区分别采用最大似然、最小距离、支持向量机等监督分类方法进行分类,并比较它们所得出的分类结果,从而来探讨监督分类方法在原理、技术、步骤及精度等问题方面的差别。
2021-12-23 15:32:57 908KB 行业研究
1
为解决高光谱数据维度高、波段之间相关性强、获取大量监督信息费时费力的问题,对高光谱图像的分类进行研究。半监督分类方法是基于传统的机器学习的一种分类方法,它可以利用少量带标签的监督信息和大量无监督信息解决获取大量监督信息问题。将分类精度高、分类时间长的孪生支持向量机分类方法与迭代速度快、收敛速度快的的
2021-12-13 17:15:35 656KB 现代电子技术
1
遥感影像分类是影像分析的一个重要内容,它是利用计算机通过对影像中不同地物的空间信息和光谱 信息进行分析,选择特征,并将特征空间划分为互不重叠的子空间,然后将影像中各个像元划归到子空间去. 目前国内国际上对影像分类的研究主要集中在应用具体的物理的、数学的方法等对影像进行的分类研究方 面[1 - 8 ] ,对于影像分类方法的研究,从不同的方面可以划分为不同的类型. 按照利用图像要素的不同,影像 分类大体可以分为三种:一是基于图像灰度值的分类,二是基于图像纹理的分类,三是基于多源信息融合的 分类[9 ] . 用计算机对影像进行分类应用的主要是模式识别技术,根据具体应用的数学方法不同又可分为:统 计法(决策分类法) 、语言结构法(句法方法) 、模糊法以及神经网络法. 在影像分类过程中,根据是否已知训练 样本的分类数据,影像分类方法又可以分为监督分类和非监督分类. 本文主要从分类原理、分类过程、分类方 法等方面来探讨这两种分类方法的区别与联系.
2021-12-13 12:15:59 184KB 影像分类;监督分类;非监督分类
1
提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能.
1
使用MFC实现了遥感图像处理中的非监督分类-K均值聚类,可以对绝大多数常用图像格式进行处理和分类,可以人工设置分类精度和分类类别,可以保存分类后的图像,代码注释很详细,界面也很美观。
2021-12-09 12:01:32 4.54MB 非监督分类 K均值聚类 遥感
1
单层感知机,实现多维数据的线性划分,采用最速梯度下降方法。
2021-12-05 21:55:11 55KB 感知机 有监督分类
1
带标签的训练样本的有限且昂贵的可用性导致以基于数据增强的监督学习的形式定义高光谱分类任务的方法的发展。 但是,大多数方法只是隐式地利用各向同性邻域中的频谱空间信息,而不是显式指示各向异性或操纵邻域系统。 在本文中,我们应用导向模板来估计局部方向的同质区域,并利用更有价值的光谱空间环境。 通过使用最佳的导向模板匹配方法,我们提出了一种数据扩充和精炼方法,以改善带有有限标记样本的任何光谱空间分类器的性能。 实验表明,该方法对许多光谱空间分类器都非常有效。
2021-11-25 18:48:20 640KB Hyperspectral image steering stencil
1
无监督学习的ppt
2021-11-01 16:05:03 1.9MB 无监督 分类算法
1
envi 监督分类后如何统计面积,步骤详细,特别适合初学者的学习
2021-10-20 17:31:35 20KB envi 监督分类 统计面积
1
基于python对遥感影像的非监督分类
2021-10-18 20:05:45 4KB 非监督分类 python 遥感影像
1