K-means聚类,手撕代码、包括数据生成、模型展示,可直接运行
2022-01-18 12:05:34 97KB kmeans算法 机器学习
GAN研究 研究生研究项目,使用CycleGAN和其他生成模型探索图像到图像的翻译。
2021-12-16 18:20:41 2.07MB JupyterNotebook
1
深度生成模型因其为各种应用生成数据的能力而备受关注,这些应用包括医疗保健、金融技术、监控等,其中最受欢迎的模型是生成对抗网络和变分自动编码器。然而,与所有机器学习模型一样,人们一直担心安全漏洞和隐私泄露,深度生成模型也不例外。
2021-12-09 13:20:17 632KB 深度生成模型 对抗性攻击
1
精确的GPS信号生成器是测试与评价先进GPS接收机设宝十的重要分析工具。本文在中频GPS信号理论模 型分析的基础上,用Matlab实现了一种数字GPS信号生成模型,它能够在数字中频上产生GPS接收信号,其中包含仿真 的噪声和接收机时钟误差。与常规的GPS信号生成器(或模拟器)相比,这种模型设计灵活、易于使用,此外,模型构 建涉及对GPS信号在接收机射频前端处理过程的仿真,从而为GPS接收机射频前端的设计提供了支持。
2021-12-01 13:57:31 415KB GPS信号生成;Matlab:模型
1
高光谱图像分离matlab代码深度生成端元建模:无监督光谱解混的应用 这个包包含作者对论文 [1] 的实现。 为了解决光谱分离中的端元可变性,端元光谱使用深度生成模型 (VAE) 建模,该模型从观察到的高光谱图像中学习。 这使我们能够使用生成模型的低维潜在空间中的点对可变端元进行参数化,然后可以与丰度同时优化以解决分离问题。 代码在 MATLAB 中实现,包括: example1.m - 比较算法的演示脚本 (DC1) example2.m - 比较算法的演示脚本 (DC2) example3.m - 比较算法的演示脚本 (DC3) example4.m - 比较算法的演示脚本 (DC4) example_real1.m - 比较算法的演示脚本(休斯顿) example_real2.m - 比较算法的演示脚本 (Samson) example_real3.m - 比较算法的演示脚本(Jasper Ridge) ./DeepGUn/ - 包含与 DeepGUn 算法相关的 MATLAB 文件 ./python/ - 包含与 DeepGUn 算法相关的 Python 文件 ./other_
2021-11-08 08:47:06 114.49MB 系统开源
1
在Tensorflow2中实现了许多生成模型GAN,VAE,Seq2Seq,VAEGAN,GAIA、Spectrogram Inversion。一切都在jupyter笔记本中的编写,便于输出到colab。
2021-11-01 12:26:08 3.39MB Python开发-机器学习
1
VAE_GAN_PyTorch 生成模型的集合(VAE,CVAE,GAN,DCGAN)
2021-10-08 21:17:29 10KB Python
1
针对长 短期记忆网络(LSTM) 在行人轨迹预测问题中孤立考虑单个行人,且无法进行多种可能性预测的问题,提出基于注意力机制的行人轨迹预测生成模型(AttenGAN),来对行人交互模式进行建模和概率性地对多种合理可能性进行预测。AttenGAN 包括一个生成器和一个判别器,生成器根据行人过去的轨迹概率性地对未来进行多种可能性预测,判别器用来判断一个轨迹是真实的还是由生成器伪造生成的,进而促进生成器生成符合社会规范的预测轨迹。生成器由一个编码器和一个解码器组成,在每一个时刻,编码器的LSTM综合注意力机制给出的其他行人的状态,将当前行人个体的信息编码为隐含状态。预测时,首先用编码器LSTM的隐含状态和一个高斯噪声连接来对解码器LSTM的隐含状态初始化,解码器LSTM将其解码为对未来的轨迹预测。在ETH和UCY数据集上的实验结果表明,AttenGAN模型不仅能够给出符合社会规范的多种合理的轨迹预测,并且在预测精度上相比传统的线性模型(Linear)、LSTM模型、社会长短期记忆网络模型( S-LSTM)和社会对抗网络( S-GAN)模型有所提高,尤其在行人交互密集的场景下具有较高的精度性能。对生成器多次采样得到的预测轨迹的可视化结果表明,所提模型具有综合行人交互模式,对未来进行联合性、多种可能性预测的能力。   行人轨迹预测是指根据行人过去一段时间 的轨迹,预测其未来的轨迹,该技术在自动驾驶“和服务机器人导航中都有着广泛的应用。行人在决策的过程中比较灵活主观,甚至完全相同的场景,不同的人都会采取不同的决策。
2021-09-24 16:02:03 1.13MB 工业电子
1
半监督学习以改善肺癌的检测 使用生成模型和半监督学习促进肺癌检测 用于训练的数据集 LUNA16数据集( ) Kaggle数据科学碗2017( ) 建筑学 结果 结节检测器结果 发电机结果 分类器结果 方法 准确性 监督学习 64% 半监督学习 87.3% 资源 Kaggle数据科学碗2017内核 Luna2016-肺结节检测 Tensorflow中的半监督学习GAN [链接] DSB2017 [链接] Keras-GAN [链接] 使用很少的数据构建强大的图像分类模型[link] 贡献者: Dhamodhran( @ svella9 ) 悉达思R科蒂( siddharthkoti ) 维杰·蒙达拉吉( Vijay-Mundaragi )
1
增强生成模型项目具体实现
2021-08-29 18:18:16 11.69MB 神经网络