DASR
(CVPR-2021)我们的论文DASR的官方PyTorch代码:。
抽象的
如今,无监督超分辨率(SR)一直在飞涨,这是因为它在实际场景中具有实用性和前景可观的潜力。 现成方法的原理在于增强未配对数据,即首先生成对应于现实世界高分辨率(HR)图像的合成低分辨率(LR)图像$ \ mathcal {Y} ^ g $现实LR域$ \ mathcal {Y} ^ r $中的$ \ mathcal {X} ^ r $,然后利用伪对$ {\ mathcal {Y} ^ g,\ mathcal {X} ^ r} $用于在有监督的方式下进行的培训。 不幸的是,由于图像转换本身是一项极富挑战性的任务,因此这些方法的SR性能受到生成的合成LR图像和实际LR图像之间的域间隙的严重限制。 在本文中,我们提出了一种用于无监督的现实世界图像SR的新颖的域距离感知超分辨率(DASR)方法。 训练数据(例
2023-02-20 20:48:45
22.63MB
Python
1