MultiPoseNet: 使用姿态残差网络进行快速多人姿态估计
2022-02-11 11:13:08 12KB Python开发-机器学习
1
本文主要介绍如何使用python搭建:一个基于深度残差网络(ResNet)的水果**图像分类识别系统**。 项目只是用水果分类作为抛砖引玉,其中包含了使用ResNet进行图像分类的相关代码。主要功能如下: - 数据预处理,生成用于输入TensorFlow模型的TFRecord的数据。 - 模型构建及训练,使用tensorflow.keras构建深度残差网络。 - 预测水果分类并进行模型评估。 ***如各位童鞋需要更换训练数据,完全可以根据源码将图像和标注文件更换即可直接运行。*** 博主也参考过网上图像分类的文章,但大多是理论大于方法。很多同学肯定对原理不需要过多了解,只需要搭建出一个预测系统即可。 **本文只会告诉你如何快速搭建一个基于ResNet的图像分类系统并运行,原理的东西可以参考其他博主**。 也正是因为我发现网上大多的帖子只是针对原理进行介绍,功能实现的相对很少。 如果您有以上想法,那就找对地方了!
2022-02-09 09:13:47 588.11MB 分类 数据挖掘 人工智能 机器学习
结合VGG和残差网络实现工业零件的缺陷检测,基于keras和tensorflow可以直接运行使用
注意力机制使用;卷积神经网络的变体keras实现
2022-01-25 14:39:29 512KB keras densenet 残差网络 inceptionnet
1
堆场烟雾检测对于火灾预警、保障人员与财产安全具有重要意义。针对传统烟雾检测方法特征提取不充分,误报率偏高以及稳健性较差的问题,提出一种基于并行深度残差网络的堆场烟雾检测方法。该方法利用目标场景烟雾RGB图像的R、G、B分量以及图像HSI变换的H、S、I分量构建并行深度残差网络,自适应获得烟雾特征;同时通过样本扩边、负样本强化学习策略来加强模型对类烟物体的判别能力。实验结果表明,该算法能有效降低因类烟物体产生的误报率,且提升了网络的检出率和稳健性。
2021-12-30 21:40:56 6.01MB 图像处理 图像识别 堆场 烟雾检测
1
使用tensorflow简单实现了残差网络的block模块以及 bottleneck模块,并在cifar-10数据集上进行了简单测试
2021-12-30 20:33:43 3KB 残差网络 cifar-10测试 深度学习
1
推荐SYS_with_movielens 使用FunkSVD,FM,itemCF / UserCF,使用残差网络的宽带和深度,使用残差网络的deepFM等构建ResSys。我尝试尽快收集所有算法。 我提供了一些基于movielens的算法 SVD: FunkSVD: BiasSVD: SVD ++ 因子分解机:FM 协同过滤 深度学习(tensorflow 2.x)宽而深 深度fm NFM
2021-12-20 09:33:44 41KB JupyterNotebook
1
resESPCN 使用残差网络的超分辨率重建ESPCN
2021-12-01 17:28:34 11KB Python
1
现有深度残差网络作为一种卷积神经网络的变种,由于其良好的表现,被应用于各个领域,深度残差网络虽然通过增加神经网络深度获得了较高的准确率,但是在相同深度情况下,仍然有其他方式提升其准确率.本文针对深度残差网络使用了三种优化方法:(1)通过卷积网络进行映射实现维度填充;(2)构建基于SELU激活函数的残差模块(3)学习率随迭代次数进行衰减.在数据集Fashion-MNIST上测试改进后的网络,实验结果表明:所提出的网络模型在准确率上优于传统的深度残差网络.
1
细粒度图像之间具有高度相似的外观,其差异往往体现在局部区域,提取具有判别性的局部特征成为影响细粒度分类性能的关键。引入注意力机制的方法是解决上述问题的常见策略,为此,在双线性卷积神经网络模型的基础上,提出一种改进的双线性残差注意力网络:将原模型的特征函数替换为特征提取能力更强的深度残差网络,并在残差单元之间分别添加通道注意力和空间注意力模块,以获取不同维度、更为丰富的注意力特征。在3个细粒度图像数据集CUB-200-2011、Stanford Dogs和Stanford Cars上进行消融和对比实验,改进后模型的分类准确率分别达到87.2%、89.2%和92.5%。实验结果表明,相较原模型及其他多个主流细粒度分类算法,本文方法能取得更好的分类结果。
2021-11-26 13:54:14 2.85MB 图像处理 细粒度图 注意力机 残差网络
1