1 系统结构   根据系统的性能要求,共振源系统主要由计算机控制软件、USB通信、CPU模块、信号发生模块、信号滤波放大电路模块、显示及键盘控制模块、外围实验装置等6部分组成。图1为该系统框图。 图1 系统框图   系统以高速低功耗STM32F103C8为主控芯片,通过按键设置输出频率与幅度,并将频率和幅度值显示在LCD屏上,并控制DDS芯片AD9850合成相应的信号,该信号经过滤波放大模块将信号的功率放大后输出到外围的振动装置上。同时,振动源可以通过USB与计算机相连,PC机在软件中设置输出信号频率和幅度。   2 系统硬件设计   2.1 CPU主控部分   系统采用STM
1
摘要: 以Cygnal 单片机C8051F130 和波形产生器MAX038 为核心, 辅以高性能D/ A 转换器AD7533 和AD7303及数字电位器X9C103 等外围电路设计了1 种信号源发生器。给出了详细的硬件设计方案和软件设计方案。经实际测试, 该信号源发生器能输出频率小于15 M Hz, 幅度200 mV~ 20 V( VPP ) 连续可调, 占空比在15%~ 85% 变化的方波、正弦波、三角波, 输出波形失真度小于0. 3%, 输出频率精度优于2 ×10- 4 , 具有外围电路简单、精度高、低失真度等优点, 得到了广泛应用。   0 引言   在现代电子测量技术的研究及应用领
1
本例介绍的数控直流稳压电源电路采用LED数码显示输出电压值,具有显示直观、操作方便、稳压精度高等特点,其输出电压为0-9.9V步进式可调 (步进值为0.1V),输出电压为5A。  电路工作原理  该直流稳压电源电路由电源稳压电路、操作控制电路、显示驱动电路、数/模 (D/A)转换电路和调整输出电路组成,如图5-23所示。   电源稳压电路由电源开关Sl、熔断器FU、电源变压器T、整流桥堆URl-UR3、电容器C、C3-C13和稳压集成电路IC8-IClO组成。  操作控制电路由电源调整按钮S2、S3、电阻器Rl-R3和可逆计数器集成电路ICl、IC2组成。  显示驱动电路由LED数码显示器A
1
刚开始学习模拟电路?觉得学的云里雾里的?觉得老师讲的不好?觉得教材烂?好了,别找理由了,学不好应该是没找到方法,分享3位前辈的经验给你,看看前辈们都是怎么成菜鸟变成大牛的。     第一位,资深模拟ic设计工程师,知乎用户Yike,本着强大的责任感来为大家传道授业解惑,让各位看到这篇文字的人学模电的时候少走弯路,有更多的时间踢球把妹聊天喝酒……     知道各位学业繁重,赶紧进入正题:     我念大学的时候,也觉得模拟电路这门课,学得稀里糊涂的。     特别是在玩过一把CS以后,这种感觉更加明显。     这里先要肯定题主是一个有上进心的好孩子。想把模电学好。     我当年感
1
电路是这样的,2个前级驱动三极管,后面四个大功率三极管,两个输出分别高低的时候为正反转。
2022-12-29 19:43:01 28KB 三极管驱动 模拟技术 模拟电路 文章
1
AD8253数字可设置增益仪器|仪表放大器其增益可达1000,同时可提供市场上其它仪表放大器或分立解决方案无法相比的直流(DC)精度和交流(AC)带宽特性,从而适合于数据采集系统、自动测试设备(ATE)和生物医学仪器,因为这些应用要求在宽电压范围内完成快速、精确测量和鲁棒性信号调理。高增益设置允许放大小信号(例如来自传感器的小信号)以驱动模数转换器(ADC)。      AD8253具有数字可设置增益功能,其增益可设置为1,10,100和1000,从而允许用户即使在AD8253用于系统之后也可以调整增益。它采用±5 V~±15 V电源|稳压器供电,可达到10 MHz带宽和达到0.01%建立时间
1
1. 基本知识 ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1). ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2). 引脚结构 IN0-IN7:8条模拟量输入通道 ADC0809对输入模
1
摘要:本文介绍了如何使用一个零漂移精密仪表放大器,一对rejustor (电动可调无源电阻)和增益设置电阻实现高精度增益设计的方法。文中以精密仪表放大器MAX4208为例,介绍了应用实例及结果。概述  仪表放大器被广泛用于各种应用。当仪表放大器连接到微弱差分信号输出的传感器时,仪表放大器需要提供高增益,而且要求高精度增益,并维持非常低的失调电压。在某些条件下,传感器输出的差分信号只有几个mV,而放大器增益需要高达1,000倍。  一些仪表放大器内置增益调节电阻并有几个固定增益设置可供选择。但对设计灵活性要求较高,同时被放大的传感器信号必须与模/数转换器的满量程相匹配时,设计人员更喜欢使用那些通
1
摘 要:分析了功率MOSFET 最大额定电流与导通电阻的关系,讨论了平面型中压大电流VDMOS器件设计中导通电阻、面积和开关损耗的折衷考虑,提出了圆弧形沟道布局以增大沟道宽度,以及栅氧下部分非沟道区域采用局域氧化技术以减小栅电容的方法,并据此设计了一种元胞结构。详细论述了器件制造过程中的关键工艺环节,包括栅氧化、光刻套准、多晶硅刻蚀、P 阱推进等。流水所得VDMOS 实测结果表明,该器件反向击穿特性良好,栅氧耐压达到本征击穿,阈值电压2.8V,导通电阻仅25m Ω,器件综合性能良好。   1 引言   功率金属- 氧化物- 半导体场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)、
1
1.调整各级静态工作点  电路接成基本放大器电路,UCC=12V,Ui=0V分别调节RP1,RP2,使得Uce1=10V,Uce2=6V,用数字电压表测量并记录各级静态工作点,记入表一中。  2.测定两级电压串联负反馈电路  在开环(8连9可近似地认为得出了没有负反馈作用但有反馈网络负载效应的基本放大器S)与闭环时(7连9)中频段电压放大倍数。 表一 静态工作点的测量   从输入端输入1 kHz约5 mV的正弦波信号,在输出波形无明显失真情况下,分别测出带负载与不带负载时开环与闭环的输出电压,计算电压放大倍数,分析是否符合                                 
1