剪刀石头布检测数据集是一个面向目标检测任务的标注数据集,它包含1973张图片,这些图片被划分为三个类别,即剪刀、石头和布。数据集采用Pascal VOC格式和YOLO格式,提供了对应的标注文件,包括.xml文件和.txt文件,这些文件与.jpg图片一一对应。 数据集中的图片数量与标注文件数量都是1973个,说明每张图片都有相应的标注信息。在标注过程中,使用了名为labelImg的工具,它是广泛应用于目标检测任务的图像标注软件。在标注规则方面,该数据集采用矩形框来标注图片中的对象,这种做法在目标检测中是常见的,因为矩形框可以清晰地定义出目标对象在图片中的位置和尺寸。 标注类别总数为3,分别对应着三种手势:剪刀(bu)、石头(jiandao)、布(shitou)。每一个类别中的目标对象数量也有所提及,其中“剪刀”类别的目标框数为609个,“石头”为679个,“布”为685个。标注的总框数为1973,这表明数据集中的每张图片都至少包含一个矩形框,框中是对应该图片中手势的位置。 此外,数据集的标注类别名称分别用中文进行了命名,即“剪刀”、“石头”和“布”,这可能是为了便于理解标注者的意图,也可能是为了适应某些需要中文标签的特定应用场景。在数据集的使用方面,虽然提供了图片及其标注,但是制作者明确声明,他们不对由此数据集训练得到的模型或权重文件的精度作任何保证。这提示使用者,在应用数据集进行模型训练之前需要仔细检查标注的准确性,并可能需要进一步的数据清洗和增强步骤。 这份数据集非常适合用于机器学习和计算机视觉中目标检测模型的训练和验证,尤其是那些涉及手势识别、图像分类和实时对象检测的应用。由于其涵盖的手势种类有限,因此它也是一个入门级别的数据集,便于研究人员和开发者测试和调试他们的算法。 数据集的提供者没有提及任何特定的版权信息或使用限制,这可能意味着该数据集可以被广泛使用于学术研究和商业开发。不过,对于任何商业用途,建议还是先确认数据集的具体使用条款,以避免潜在的法律问题。此外,考虑到数据集的标注质量直接关系到最终模型的性能,使用者应当对标注进行仔细的审查和必要的修正,确保数据集的高质量能够帮助模型训练达到预期的效果。
2025-11-13 17:52:33 2.38MB 数据集
1
内容概要:本文详细记录了DINOv3模型的测试过程,包括预训练模型的下载、环境配置、模型加载方式以及在不同下游任务(如图像分类、目标检测、图像分割)中的应用方法。重点介绍了如何冻结DINOv3的backbone并结合任务特定的头部结构进行微调,同时对比了PyTorch Hub和Hugging Face Transformers两种主流模型加载方式的使用场景与优劣,并提供了显存占用数据和实际代码示例,涵盖推理与训练阶段的关键配置和技术细节。; 适合人群:具备深度学习基础,熟悉PyTorch框架,有一定CV项目经验的研发人员或算法工程师;适合从事视觉预训练模型研究或下游任务迁移学习的相关从业者。; 使用场景及目标:①掌握DINOv3模型的加载与特征提取方法;②实现冻结backbone下的分类、检测、分割等下游任务训练;③对比Pipeline与AutoModel方式的特征抽取差异并选择合适方案;④优化显存使用与推理效率。; 阅读建议:此资源以实操为导向,建议结合代码环境边运行边学习,重点关注模型加载方式、头部设计与训练策略,注意版本依赖(Python≥3.11,PyTorch≥2.7.1)及本地缓存路径管理,便于复现和部署。
2025-11-13 17:29:00 679KB PyTorch 图像分割 目标检测 预训练模型
1
资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 OpenPose关键点识别速查笔记 —————————————— 1 整体思路 把RGB图拆成两个并行的置信图分支: 身体18点 PAFs(Part Affinity Fields) 手/脸/足 高分辨热图 用CNN同时估计,后接贪婪匹配→拼装骨架。 2 网络结构 输入:368×368×3 前段:VGG19前10层→特征F 中段:6级级联 refine,每级含: PCM(关键点热图) + PAF(肢体向量场) 双分支 末段:上采样×4→高分辨率手/脸/足热图(输出尺寸 96×96)。 3 关键点定义 身体18点:0鼻1颈2右肩3右肘…17头顶 手21点:掌心→五指关节 脸70点:轮廓、眉、眼、鼻、嘴 足6点:大/小趾、脚跟 4 PAF 拼装流程 (1) 取PCM中局部极值>阈值得候选点 (2) 对每类肢体(如右前臂) a. 计算两端点对连线 b. 采样10点,累加PAF方向一致性得分 c. 匈牙利算法最大权重匹配→成对 (3) 重复(2)直至全身骨架。 5 训练细节 数据增强:随机旋转±30°、尺度0.5-1.5、半身遮挡 损失:均方误差,难样本权重×3 迭代:1e-4 Adam,前60k步冻结VGG,后40k全调。 6 推断加速 半精度FP16,批处理4帧 先用低分辨率检出人体框,再裁出子图精修手/脸 多线程:CPU后处理,GPU前向。 7 可视化速读 图1:输入图 → 图2:PCM叠加 → 图3:PAF箭头 → 图4:最终骨架 红=高置信,蓝=低置信。 8 误差排查清单 漏检:降低阈值/增尺度 抖动:使用光流平滑 自遮挡:加侧面训练数据。
2025-11-13 10:24:19 250B 姿态估计 PPT资源
1
在深度学习领域,目标检测是计算机视觉中的一个重要分支,它旨在识别图像中的物体并给出物体的类别和位置。随着研究的深入和技术的发展,目标检测模型不断进化,出现了许多具有先进性能的模型,RF-DETR模型便是其中之一。 RF-DETR模型全称为“Random Feature DETR”,是一种结合了Transformer架构的目标检测模型。DETR(Detection Transformer)是其基础,其核心思想是将目标检测问题转化为集合预测问题,使用Transformer的编码器-解码器结构进行端到端的训练。在RF-DETR模型中,"Random Feature"(RF)技术被引入以提高模型的泛化能力和检测效率。 预训练模型是深度学习中一种常见的技术,它指的是在一个大型数据集上预先训练一个模型,然后将这个模型作为基础应用到特定的任务中,以此加快模型训练速度并提升模型性能。rf-detr-base预训练模型就是基于RF-DETR架构,并在大型数据集上进行预训练的模型。该模型可以被用来在特定数据集上进行微调,以适应新的目标检测任务。 预训练模型特别适合那些网络连接条件不佳,或者由于安全和隐私政策而无法直接访问互联网的离线环境。对于开发人员而言,即使在GitHub访问速度较慢的情况下,他们也可以下载预训练模型并在本地进行模型训练和评估,从而避免了网络依赖问题。 rf-detr-base-coco.pth是rf-detr预训练模型的一种文件格式,通常以.pth结尾的文件是PyTorch框架中的模型参数文件。这种文件包含了模型的权重和结构信息,是进行模型微调和推理时不可或缺的资源。通过使用这样的预训练模型文件,开发人员可以节省大量的时间和资源,并在较短的时间内得到较好的目标检测结果。 rf-detr-base预训练模型的推出,为那些寻求高精度目标检测解决方案的开发人员提供了一个强有力的工具。它的随机特征技术和预训练机制使得它在目标检测领域处于技术前沿,同时也为离线环境中的模型训练提供了便利。
2025-11-13 10:22:58 325.51MB 目标检测 预训练模型 深度学习
1
文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/144125917 重要说明:数据集里面有很多增强图片请查看图片预览 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):7958 标注数量(xml文件个数):7958 标注数量(txt文件个数):7958 标注类别数:9 标注类别名称:["Gloves","Helmet","Person","Safety Boot","Safety Vest","bare-arms","no-boot","no-helmet","no-vest"]
2025-11-13 10:04:20 407B 数据集
1
内容概要:本文详细介绍了无位置传感器BLDC电机的反电势过零点检测技术。首先解释了反电势过零点检测的基本原理,即利用悬空相端电压的变化来确定换相的最佳时机。接着讨论了硬件设计要点,如确保中性点电压的准确测量、采用适当的滤波措施以及合理的ADC采样时机。随后深入探讨了软件实现细节,包括移动窗口滤波、过零点检测算法、相位补偿及时序控制等方面的技术难点及其解决方案。最后分享了一些实用的调试技巧和常见错误防范。 适合人群:电机控制系统工程师、嵌入式系统开发者、自动化设备制造商及相关领域的研究人员和技术爱好者。 使用场景及目标:适用于需要降低成本并提高可靠性的BLDC电机应用场景,如家用电器、工业自动化等领域。主要目标是掌握无位置传感器BLDC电机控制的关键技术和实现方法,从而能够独立完成相关系统的开发与调试。 其他说明:文中提供了大量具体的代码片段和实践经验,有助于读者更好地理解和应用于实际项目中。同时强调了硬件设计和软件算法相结合的重要性,提醒读者注意实际应用中的各种挑战和注意事项。
2025-11-12 09:25:05 335KB
1
一款由NOKIA公司出品的专业显示器测试软件,功能很全面,包括了测试显示器的亮度、对比度、色纯、聚焦、水波纹、抖动、可读性等重要显示效果和技术参数。Nokia Monitor Test 小小的身材,一张软盘即可携带,却带给我们强大的功能。您可以在购买显示器时带着它,经过它检测过的显示器可以放心购买,也可以用它来更好地调节你的显示器,让您的显示器发挥出最好的性能。Nokia Monitor Test
2025-11-11 21:30:02 329KB 系统工具
1
yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
基于OpenCV和Python的实时口罩识别系统:支持摄像头与图片检测,界面简洁操作便捷,基于OpenCV的口罩识别系统 相关技术:python,opencv,pyqt (请自行安装向日葵远程软件,以便提供远程帮助) 软件说明:读取用户设备的摄像头,可实时检测画面中的人的口罩佩戴情况,并给予提示。 有基础的同学,可稍作修改,检测图片。 第一张为运行主界面。 第二张为部分代码截图。 第三和第四张为运行界面。 ,基于OpenCV的口罩识别系统; Python; OpenCV; PyQt; 远程协助; 摄像头读取; 实时检测; 口罩佩戴情况提示; 代码截图; 运行界面。,"基于OpenCV与Python的口罩识别系统:实时检测与提醒"
2025-11-10 15:19:31 1004KB 哈希算法
1
铁轨缺陷检测数据集NEU-DET的Yolo格式,即NEU-DET_Yolo.zip,是一个专门针对铁路轨道缺陷检测优化的数据集,并采用了YOLO(You Only Look Once)格式。YOLO是一种流行的实时目标检测系统,它将目标检测任务视为一个回归问题,将边界框的预测和分类同时进行。这种格式的数据集在机器学习和计算机视觉领域中非常有用,特别是在提高铁路安全性的应用方面。 NEU-DET_Yolo数据集是经过精心策划和标注的,它包含了用于训练和评估机器学习模型的大量图像和对应的标注信息。这些图像专门针对铁轨缺陷进行了拍摄,图像中的铁轨可能包含裂纹、压痕、剥离、锈蚀、断裂等缺陷类型。对于每一个缺陷,数据集会提供精确的位置标注,这些标注通常以边界框的形式出现,标注了缺陷的具体位置和大小。 数据集的组织结构遵循YOLO格式的标准,这意味着每个图像文件对应一个文本文件,后者包含了标注信息。在YOLO格式中,每个标注文件通常包含多行,每行对应一个对象的标注,行中的每个数字代表了该对象的位置和类别信息。通常,前四个数字表示边界框的中心点坐标、宽度和高度,接下来的数字表示对象的类别索引。 此外,NEU-DET_Yolo数据集可能还包括用于训练和测试的数据分割,以确保模型可以正确地学习到从数据中泛化的能力。分割可能将数据集分为训练集、验证集和测试集,这样研究人员可以使用训练集来训练模型,使用验证集来调整超参数,最后使用测试集来评估模型的性能。 在实际应用中,铁路轨道缺陷的自动检测技术可以显著提高铁路的安全性和维护效率。通过对铁轨缺陷进行实时检测,能够及时发现潜在的安全隐患,避免可能发生的事故,从而保障列车和乘客的安全。此外,使用自动化检测方法还可以减少人工检测的需求,降低维护成本,并提高检测的准确性和一致性。 YOLO格式的数据集因其在实时检测任务中的优势而被广泛应用,它的高效性和准确性使其成为目标检测领域的首选算法之一。而NEU-DET_Yolo作为一个针对特定应用优化的数据集,其在铁路轨道缺陷检测领域的应用前景十分广阔。随着机器学习技术的不断进步,该数据集有望在未来的智能铁路维护系统中发挥重要作用。
2025-11-10 10:27:12 26.52MB
1