机器学习实战:基于Scikit-Learn、Keras和TensorFlow 原书第2版 配套代码
2022-07-15 22:46:17 49.95MB 机器学习
1
机器学习实战案例》课件PPT.zip
2022-07-06 11:05:34 30.88MB 教学资料
机器学习实战源代码machinelearninginaction.7z
2022-06-30 16:04:09 28.31MB 机器学习实战源代码machine
作物引导拍照挑战赛【CV比赛】,通过图像里盆栽的位置可以对图像进行引导方向的识别,给出合理的引导方向。本次赛提供已对植株位置进行分类的图像数据,参赛选手需基于提供的样本构建模型,实现**对图片中植株的位置的分类**(正中、上、下、左、右、左上、左下、右上、右下、过大、过小)。 背景:随着计算机技术的发展,农业开始步入智能化领域。在农业智能化过程中,通过建立起农业病虫害识别模型摆脱传统的专家进行农业病虫害识别。但在农业病虫害识别模型中,由于使用拍摄工具的主体是人,而农业病虫害识别模型对于需要识别的图像具有一定规范性。由于没有对人在拍摄过程中进行规范性引导,导致了人在拍摄过程中随意拍摄图片,从而造成了实际的农业病虫害识别精度远远小于训练时的精度。为了使人拍摄的农作物图像能够达到农业病虫害识别模型输入的要求,提高实际的农业病虫害识别模型的精度,需要**建立起判断植株在图片中的位置的模型来辅助人进行图片拍摄**。在引导拍照过程中,**手机需要实时调用该模型**。为了在移动端得到较好的引导效果,模型的参数规模和速度都需要有相应的限制。人眼产生视觉暂留的阈值一般位于12~24Hz,而屏幕刷新频率的
2022-06-25 09:10:12 472.74MB 计算机视觉 机器学习实战 cv cv比赛
1
声明         本文参考了《机器学习实战》书中代码,结合该书讲解,并加之自己的理解和阐述 问题描述         朋友海伦一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人。经过一番总结,她发现曾交往过三种类型的人: 不喜欢的人 魅力一般的人  极具魅力的人         为了让软件更好的给海伦推荐人选,海伦收集很多约会数据,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。海伦的样本主要包含以下3种特征: 每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消费的冰淇淋公
2022-06-20 20:18:27 282KB k近邻算法 学习 实战
1
机器学习实战 鲍鱼年龄预测 knn svm 逻辑回归 有代码可运行 机器学习实战 鲍鱼年龄预测 knn svm 逻辑回归 有代码可运行
2022-06-20 10:05:01 53KB 机器学习 knn svm 预测
本文实例为大家分享了python K均值聚类的具体代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- #!/usr/bin/python ''''' k Means K均值聚类 ''' # 测试 # K均值聚类 import kMeans as KM KM.kMeansTest() # 二分K均值聚类 import kMeans as KM KM.biKMeansTest() # 地理位置 二分K均值聚类 import kMeans as KM KM.clusterClubs() from numpy import * # 导入数据集 def loadData
2022-06-18 13:22:11 73KB python python机器学习 python算法
1
赛题数据由训练集和测试集组成,总数据量超过25w,包含69个特征字段。为了保证比赛的公平性,将会从中抽取15万条作为训练集,3万条作为测试集,同时会对部分字段信息进行脱敏。 特征字段:客户ID、地理区域、是否双频、是否翻新机、当前手机价格、手机网络功能、婚姻状况、家庭成人人数、信息库匹配、预计收入、信用卡指示器、当前设备使用天数、在职总月数、家庭中唯一订阅者的数量、家庭活跃用户数、....... 、过去六个月的平均每月使用分钟数、过去六个月的平均每月通话次数、过去六个月的平均月费用、是否流失
1
Python机器学习实战-数据&代码
2022-06-15 22:59:33 110KB 机器学习 python
1
分享课程——Spark 2.x + Python 大数据机器学习实战课程,完整版视频课程下载。 本课程系统讲解如何在Spark2.0上高效运用Python来处理数据并建立机器学习模型,帮助读者开发并部署高效可拓展的实时Spark解决方案。 本课程从浅显易懂的“大数据和机器学习”原理说明入手,讲述大数据和机器学习的基本概念,如分析、分类、训练、建模、预测、推荐引擎、二元分类、多元分类、回归分析和Pipeline等;为降低学习大数据技术的门槛,提供了丰富的案例实践操作和范例程序编码,展示了如何在单机Windows系统上建立Spark 2.x + Python开发环境; 适合于学习大数据基础知识的初学者,更适合正在使用机器学习想结合大数据技术的人员;
2022-05-26 19:07:31 739B spark Python 大数据 机器学习
1