【基于机器学习的网络异常流量检测方法】 网络异常流量检测是网络安全领域的重要研究课题,它涉及到互联网技术的快速发展和日益复杂的网络环境。异常流量数据,包括Alpha Anomaly、DDoS、Port Scan等不同类型的异常流量,对个人和国家的计算机安全构成严重威胁。这些异常流量可能源于恶意行为或网络软硬件故障,导致网络稳定性下降和潜在的安全隐患。 1. 网络异常流量类型 - Alpha Anomaly 异常流量:这种流量指的是高速点对点的非正常数据传输,其特征主要体现在字节数和分组数的异常增加。 - DDoS 异常流量:分布式拒绝服务攻击,通过大量源头向单一目标发送请求,导致服务瘫痪。检测特征包括分组数、源IP地址、流计数和目的IP地址。 - Port Scan 异常流量:针对特定端口的探测活动,可能是为了寻找漏洞或进行入侵。检测特征通常涉及目的端口总数。 - Network Scan 异常流量:更广泛的网络扫描行为,尝试发现网络中的弱点。检测特征可能涵盖目的IP总数、源IP总数等。 - Worms 异常流量:蠕虫病毒传播导致的流量异常,可能导致网络拥堵。 - Flash Crowd 异常流量:短时间内大量用户访问同一资源,如热门事件或新闻报道,可能会对服务器造成压力。 2. 机器学习在检测中的应用 传统检测方法如基于规则的系统和统计模型在应对复杂异常流量时往往力不从心。因此,研究者转向了机器学习,利用其自适应性和泛化能力来提高检测效率和准确性。文中提到的改进型ANFIS(Adaptive Neuro-Fuzzy Inference System)算法是一种融合模糊逻辑和神经网络的智能模型,能有效处理非线性问题。 - 改进型ANFIS算法:针对传统神经网络算法(如BP神经网络)在训练过程中可能出现的局部最小值问题,通过附加动量算法优化模型参数,提高训练效率并避免陷入局部最优,从而提升检测性能。 3. 性能比较 通过KDD CUP99数据集和LBNL实验室的数据进行测试,改进型ANFIS算法相对于BP神经网络显示出更高的训练效率和检测准确率。这表明机器学习方法在异常流量检测中具有显著优势,能够更好地适应不断变化的网络环境和新的威胁模式。 基于机器学习的网络异常流量检测方法,如改进型ANFIS,为网络安全提供了一种有效且灵活的解决方案。通过对各种异常流量类型的深入理解,结合先进的算法,可以增强网络防御能力,保护网络资源免受恶意攻击。未来的研究将继续探索更高效、更精准的检测技术,以应对不断演变的网络威胁。
2025-09-09 16:51:50 1.4MB
1
随着网络技术的飞速发展,网络环境变得日益复杂,网络攻击和恶意软件等安全威胁日益增多。传统的基于静态规则的网络异常检测方法已经无法满足对动态变化网络环境的安全需求,因此,基于机器学习的网络异常流量分析系统应运而生。该系统利用机器学习的自学习、自演化特性,适应复杂多变的网络环境,能够有效检测出未知异常和攻击类型,满足实时准确检测的需求。 系统的核心在于使用机器学习方法对异常流量进行判别,并设计异常流量检测模型。通过对HTTP请求头字段进行特征提取,系统形成了一个包含多维特征的特征库,并将其应用于高斯混合模型(Gaussian Mixed Model,简称GMM)中。高斯混合模型是用高斯概率密度函数对事物进行精确量化,通过多个单一高斯模型的加权和进行拟合。在对样本概率密度分布进行估计时,采用的模型是由几个高斯模型的加权和构成的。每个高斯模型代表了一个类(Cluster),通过计算样本在各个类上的概率,选取概率最大的类作为判决结果。 高斯混合模型的训练涉及到期望最大(Expectation Maximization,简称EM)算法,这是一种从不完全数据集中求解概率模型参数的最大似然估计方法。与K-means算法相比,EM算法在达到收敛之前需要更多的迭代计算,因此在训练高斯混合模型时,通常会使用K-means算法作为初始化值,然后用EM算法进行迭代求解。 在异常流量检测方面,系统首先通过数据预处理,包括样本收集、HTTP流量提取和数据集处理等步骤。数据集主要来源于UNSW-NB15数据集和恶意样本。UNSW-NB15数据集包含了正常的上网流量和异常流量,用于系统学习和测试。恶意样本则用于训练模型,以便能够区分正常流量和恶意流量。 在实际应用中,系统首先根据HTTP请求头部字段提取特征,然后将特征信息保存在CSV文件中。数据集处理过程中,利用UNSW-NB15数据集中的恶意流量标记集,提取HTTP异常流量,并以CSV格式存储所需字段信息。此外,在CSV格式文件中新增字段,用数字1表示恶意流量,用数字0表示正常流量,方便机器学习模型对数据集进行训练和检测。 机器学习模型在高斯混合模型中的应用,不仅能够有效提取多维特征并进行异常流量检测,而且经过测试证明特征计算方法在高斯混合模型中有较好的准确率和召回率,从而保证了系统的检测性能。该系统的成功应用,为网络异常流量分析提供了新的思路和方法,对于保障网络安全具有重要的实际意义。
2025-09-09 15:29:20 81KB
1
内容概要:本文介绍了数据标注工程的背景、发展历程及其重要性。数据标注是人工智能发展的基石,尤其在第三次人工智能浪潮中,随着深度学习的兴起,数据标注已成为一门独立的新兴产业。文章详细解释了数据标注的定义,即将标签添加到图像、语音、文本、视频等数据中,以供机器学习使用。文中还探讨了数据标注的分类(如图像标注、语音标注、文本标注、视频标注),并介绍了完整的数据标注流程,包括数据采集、清洗、标注和质检。此外,文章列举了数据标注在出行、金融、医疗、家居、安防、公共服务和电子商务等多个行业的应用案例。最后,文章讨论了人工智能训练师这一新职业的兴起及其职业等级划分,并展望了数据标注行业未来的发展趋势。 适合人群:对人工智能及数据标注感兴趣的初学者,以及从事或计划从事数据标注工作的人员。 使用场景及目标:①了解数据标注的基本概念和发展历程;②掌握数据标注的具体分类和应用场景;③熟悉数据标注的全流程,包括采集、清洗、标注和质检;④了解人工智能训练师的职业路径和发展前景。 阅读建议:本文内容详实,涵盖了数据标注的各个方面,建议读者在阅读时重点关注数据标注的定义、分类、流程及应用场景,结合实际案例理解其重要性,并关注人工智能训练师这一新兴职业的发展趋势。
2025-09-08 16:51:38 1.72MB 数据标注 人工智能 数字经济 机器学习
1
Tesseract-OCR是一款功能强大的开源文字识别引擎,它能够支持多种语言的文本识别。在处理中文文档时,尤其需要使用专门的中文语言包以提高识别的准确率。最新中文语言包是指为Tesseract-OCR引擎提供的最新的针对中文文字的训练数据文件,文件名为chi-sim.traineddata。这个文件是经过专门训练的,包含了大量中文字符的形状、结构和上下文信息,使得Tesseract在处理中文时能够更加精准地解析和识别文字。 解压即可使用是该语言包的一个特点,这意味着用户无需进行复杂的安装或配置步骤,只需下载并解压相应的chi-sim.traineddata文件到tesseract的tessdata目录下,即可使Tesseract-OCR引擎支持中文识别功能。这种方式极大地简化了中文环境下的使用流程,使其更加亲民和易于上手。 Tesseract-OCR不仅仅支持中文和英文,它还能够识别超过100种语言的文字。正因为此,Tesseract在图像识别、文档数字化、自动化数据录入等多个领域都有广泛的应用。作为开源项目,Tesseract-OCR得到了全球开发者社区的持续支持和改进,其准确性和适用性不断提升。 对于图像识别、语言包和机器学习这三个标签,它们与Tesseract-OCR及中文语言包紧密相关。图像识别指的是Tesseract-OCR的核心功能,即从图片中识别出文字。语言包则是指为了让Tesseract能够识别特定语言文字,而提供的专门训练数据集。机器学习则是Tesseract-OCR背后的技术基础,通过机器学习模型,Tesseract能够学习并提高对不同文字的识别准确率。Tesseract-OCR利用了先进的机器学习算法来训练模型,从而使得其识别能力不断增强。 在压缩包文件中,tessdata是Tesseract-OCR引擎存放训练数据文件的默认目录。当用户下载并解压chi-sim.traineddata到此目录后,Tesseract-OCR便能够识别中文字符。这一过程是自动化的,进一步降低了用户的操作难度。 从应用角度来看,Tesseract-OCR及其中文语言包的使用场景十分广泛。例如,在图书馆、档案馆等文化机构,可应用于历史文献、古籍的数字化工作中,将纸质文档中的文字转化为电子文本,便于保存、检索和分享。在商业领域,它可用于自动识别发票、合同及其他商业文件中的关键信息,以实现高效的数据录入。在公共安全领域,Tesseract-OCR可以辅助执法部门快速提取和分析证据中的文字信息。在移动应用和在线服务中,Tesseract-OCR也为那些需要文字识别功能的应用提供了支持,提升了用户体验。 Tesseract-OCR最新中文语言包的推出,不仅丰富了Tesseract-OCR引擎的语言支持能力,也为其在中文文字识别方面提供了强大的技术保障。它简化了用户的使用流程,并且拓展了Tesseract-OCR的应用场景,使其在图像识别、自动化数据录入和机器学习等方面的应用更加得心应手。通过不断更新的语言包,Tesseract-OCR能够持续进步,满足不同领域对文字识别技术的需求。
2025-09-08 16:30:36 33.09MB 图像识别 机器学习
1
浙大-胡浩基老师-机器学习课程是一套全面覆盖机器学习基础理论与实践应用的PPT教材,由浙江大学的胡浩基老师主讲,并在B站平台同步配套公开。这套课程对于那些希望深入了解机器学习原理、算法及其在数据科学中应用的学者和从业者来说,是一份不可多得的学习资源。 课程内容涵盖了机器学习的基础概念、核心算法以及相关应用实例。在基础概念部分,胡浩基老师将引导学员了解机器学习的定义、发展历程、主要任务和应用场景。此外,课程还将深入探讨学习理论,包括监督学习、无监督学习、强化学习等,以及如何根据不同的问题选择合适的学习方法。 核心算法部分是课程的重点,包括但不限于决策树、支持向量机(SVM)、神经网络、集成学习等经典算法。老师会详细讲解每种算法的工作原理、数学基础以及优缺点。通过PPT中丰富的图表和实例,学员可以更加直观地理解这些算法的运行机制和应用场景。 除了理论知识,课程还注重实践操作,PPT中会包含算法的具体实现和案例分析。学员将通过实际操作来加深对机器学习算法应用的认识,例如使用Python中的机器学习库如scikit-learn,实现各类算法的编码和调试。胡浩基老师将通过案例分析,引导学员学会如何解决实际问题,比如在图像识别、文本分析、推荐系统等领域的应用。 此外,课程还会讲解机器学习在不同行业中的应用,如金融风控、医疗健康、自动驾驶等,并分析当前行业的发展趋势和技术挑战。PPT中会用一些前沿的研究成果和案例来激发学员的创新思维和学习兴趣。 整体而言,这是一套深入浅出、理论与实践相结合的机器学习课程。对于想要系统学习机器学习的学员来说,浙大-胡浩基老师-机器学习课程PPT不仅可以作为入门教材,也可以作为深入研究的学习参考。通过系统学习,学员将能够掌握机器学习的关键技术,并为未来在数据科学领域的研究或工作打下坚实的基础。
2025-09-08 16:26:52 119.28MB 机器学习 PPT
1
内容概要:本文档提供了机器人开发全流程的实战教程包,涵盖从理论入门到工程部署的所有环节。它针对智能小车、机械臂、语音交互机器人等具体应用场景,详细介绍了机器人开发中的感知、决策、控制三个核心模块,并支持Arduino、树莓派、Jetson Nano、ROS等主流开发平台。文档内含大量实例项目,如超声波避障智能小车、六自由度机械臂控制以及语音识别语音播报机器人助手,每个项目都配有完整的工程文件和详细的讲解文档。此外,还深入探讨了PID控制、Kalman滤波、路径规划等控制算法,以及ROS系统的使用,包括Gazebo仿真环境的搭建、MoveIt机械臂路径规划等。最后,提供了硬件接入指南、多机通信方案、Web控制界面开发等内容。 适合人群:机器人入门学习者(包括高职、本科、研究生)、工业机器人研发工程师、人工智能及控制系统研究人员、高校实验室或企业项目组的原型设计成员、教育机器人课程教师或培训讲师。 使用场景及目标:①帮助初学者快速掌握机器人开发的基础知识和技术;②为有一定经验的研发人员提供深入的技术细节和实战技巧;③辅助教师和培训讲师进行教学活动,提供丰富的教学材料;④支持研究团队开展相关领域的科研工作,促进技术创新。 其他说明:此教程包不仅包含丰富的理论知识和实践案例,还提供了详细的硬件说明、AI模块集成指南、部署与测试方法,确保使用者能够顺利完成从概念到成品的整个开发过程。同时,对于希望进一步扩展项目的用户,文档也给出了多机通信、Web控制界面、远程OTA升级等高级功能的实现思路。
2025-09-08 14:01:44 4KB 机器人开发 Arduino Python 机器学习
1
单类支持向量机(One-Class SVM)是支持向量机(SVM)的一个变种,主要用于异常检测或无监督学习场景。它不依赖于两个类别的数据,而是通过构建一个决策边界来描述正常样本的分布,从而识别出那些远离正常样本的异常点。在MATLAB中,可以使用内置的`svm`和`svdd`工具箱来实现单类支持向量机的训练和预测。 ### 支持向量机(SVM)基础 SVM是一种二分类模型,它的基本思想是找到一个最优超平面,使两类样本间隔最大化。这个超平面由距离最近的样本点(支持向量)决定。在多类问题中,可以采用一对一对比的方式或者构建多个二分类器。 ### 单类支持向量机(One-Class SVM) 单类SVM的目标是构建一个最大边界的决策超球面,以包含大部分正常数据点。异常点则位于这个球面之外。这通常用于未知类别检测,如异常检测、新颖性检测等。 ### MATLAB中的`svm`和`svdd` - **`svm`**:MATLAB的`svmtrain`函数用于训练支持向量机模型。对于单类SVM,我们可以提供全部为同一类别的样本数据,`svmtrain`会自动识别并构建单类模型。训练完成后,使用`svmclassify`进行预测。 - **`svdd`**:这是专门用于单类SVM的工具,全称为“Support Vector Data Description”。`svddtrain`函数用于训练SVDD模型,它会构建一个最小的球形边界来包围数据点。同样,`svddclassify`用于基于此模型对新样本进行分类。 ### SVM与SVDD的对比 1. **决策边界形状**:SVM通常是线性或非线性的超平面,而SVDD通常是一个球形边界。 2. **目标函数**:SVM最大化两类之间的间隔,SVDD最小化正常样本到决策边界的距离。 3. **应用场景**:SVM适用于二分类和多分类,SVDD更适用于异常检测和新颖性识别。 ### 应用示例 在提供的压缩包中,"数据"可能包含了用于训练和测试的样本数据集,而"超支持向量机"可能是实现单类SVM的MATLAB代码。使用这些资源,你可以按照以下步骤操作: 1. 加载数据,并预处理(如归一化)。 2. 使用`svmtrain`或`svddtrain`训练单类模型。 3. 对新的或未知样本使用`svmclassify`或`svddclassify`进行预测,判断其是否属于已知类别(对于单类SVM,就是正常类)。 4. 分析结果,评估模型性能(如误报率、漏报率)。 ### 总结 单类支持向量机是一种强大的工具,尤其在面对无标签数据或异常检测任务时。MATLAB提供了方便的工具包,使得在实际应用中实现单类SVM变得相对简单。通过理解其原理并结合提供的源代码,你可以进一步深入研究和定制自己的单类SVM模型。
2025-09-04 09:09:47 241KB 机器学习
1
RapidMiner软件安装包,也叫:AI Studio 2025.0
2025-09-03 19:49:20 534.45MB AI 数据分析 数据挖掘 机器学习
1
在电力电子技术飞速发展的当下,磁性元件作为功率变换器中的关键部分,其性能直接决定了系统的效率、功率密度与可靠性。特别是磁芯损耗,在高频高效的应用中占有相当比重。准确评估磁芯损耗,对优化设计和提升转换效率至关重要。本文采用实验数据和数学建模相结合的方法,构建了磁芯损耗的预测模型。 针对不同励磁波形的精确识别问题,利用四种磁芯材料的数据集,分析了磁通密度波形的时域特征,并进行傅里叶变换至频域提取谐波。运用FNN构建MLP模型,用前八个谐波负值作为特征数据进行训练,但效果不佳。随后,采用信号处理与机器学习结合的THD-MLP模型,准确率达到了100%,并成功预测了数据。 研究了温度对磁芯损耗的影响,对同一种材料在不同温度下的损耗数据进行预处理和初步分析,结合斯坦麦茨方程,通过最小二乘回归拟合得到了修正后的损耗方程。该方程预测效果良好,相关系数达到0.997678,RMSE为11822.8。 再者,为探究温度、励磁波形和磁芯材料对损耗的综合影响,首先对数据进行分类和特征提取,构建了磁损值与这些因素的多项式模型,并用最小二乘法拟合获得最佳参数。通过枚举法找到了最小磁损值对应的条件,预测在特定条件下的最小磁芯损耗。 在分析了温度、励磁波形和材料对磁芯损耗的独立及协同影响后,发现传统回归方法在处理复杂非线性关系时存在局限,预测精度不足。因此,将最小二乘回归结果作为新特征,与MLP结合进行非线性回归建模,引入对数变换处理损耗数据,最终得到与真实数据高度相关的预测结果。 为计算最小磁芯损耗和传输磁能最大时的条件值,构建了基于预测模型的目标函数,并转化为最小值问题。利用遗传算法进行求解,确定了磁芯损耗和传输磁能的最优值。整个研究过程运用了多种技术和算法,包括最小二乘回归、多层感知器MLP模型、傅里叶变换、FNN以及遗传算法。 关键词包括:磁芯损耗、最小二乘回归、多层感知器MLP模型、机器学习、遗传算法等。 问题五的求解过程表明,在电力电子变换器优化设计中,准确评估磁性元件性能,特别是磁芯损耗,对于提高整体系统的效率和可靠性具有重要意义。通过实验数据和数学建模相结合,构建的预测模型能够有效评估磁芯损耗,为磁性元件设计和功率转换效率优化提供有力支持。同时,通过模型预测,可以确定最优的工作参数,为磁性元件的应用提供理论基础和实际操作指导。整体研究过程中,综合利用了现代数学建模技术和先进的机器学习方法,展现了跨学科研究在解决实际工程问题中的潜力和价值。
1
本文提供了基于Python的高斯过程回归(GPR)的实例演示。它介绍了多输入单一输出回归的任务处理,涵盖了从生成虚拟数据到实施预测的完整流程。重点在于构建和训练GPR模型,在数据集上的表现情况以及如何解读预测结果及其不确定度范围;另外,还包括对所建立模型的有效性的多维评测。 适合人群:对机器学习感兴趣并希望通过具体案例深入理解和实际运用高斯过程回归的技术人员。 使用场景及目标:本教程的目标读者群体为想要深入了解高斯过程回归的理论依据以及其实践技巧的人群,特别是在解决涉及非参数数据的小样本回归分析、多指标评估等问题方面寻求方法的人们。 补充说明:尽管本文主要关注于高斯过程模型的具体构建步骤,但它也为感兴趣的个人指明了几项未来的拓展途径,例如改进核心公式以便更好地应对大型数据集合以及其他高级主题,有助于推动项目的不断发展完善。
2025-08-31 18:17:58 38KB 高斯过程回归 机器学习 Python
1