matlab 期望函数代码 ML_Maximization 最大似然期望最大化算法 分两个语言版本: Matlab:主函数为demo_MLEM_Simulation.m python: im = phantom(im_size, im_size)函数是Matlab内置的,生产一个im_size * im_size的矩阵(图片),在python中直接把矩阵数据放到im.csv中进行读取 Images MLEM函数的主要作用是试照片降噪,在程序迭代10次,python代码把每次迭代后的图像记录也保存下来了,请参考images文件夹
2023-03-02 12:44:22 333KB 系统开源
1
wpf window窗口最大化恢复动画修改,修改窗口拖拉功能,支持动画关闭窗口
2023-03-02 09:47:49 1.23MB wpf 动画 最大化 恢复窗口
1
em算法matlab代码电磁场 HMRF的MATLAB实现,如“通过隐马尔可夫随机场模型和期望最大化算法对脑MR图像进行分段”(Zhang等人,2001年)所述。 HMRF被应用于从OASIS脑截面数据集中分割图像,但是提供的代码可以针对任何3D图像分割进行修改。 您可以在什么上测试此算法? 任何3D图像,但我已经使用OASIS截面数据集验证了模型。 该数据集由416名18-96岁的正常和早发的阿尔茨海默氏病患者组成。 数据集提供了地面真相标签-来自Zhang等人描述的HMRF的FAST-FSL实现。 纸。 相关博客文章:
2023-02-28 11:45:37 8KB 系统开源
1
基于LP范数最大化的线性判别分析
2023-02-24 20:55:23 768KB 研究论文
1
多元高斯混合的自由分裂和合并期望最大化算法。 该算法适用于估计混合参数和化合物数量 用法------ [M , S , P ,logl] = fsmem_mvgm(Z , [option] , [M0] , [S0] , [P0]); 输入项------ Z 测量 (dx N) M0 初始平均向量。 M0可以是(dx 1 x K)(默认[来自Z的基尼随机元素]) S0 初始协方差矩阵。 S0 可以是 (dxdx K)(默认 [cov(Z)/40]) P0 初始混合概率(1 x 1 x K):(默认 [1/Kini]) 选项Kini 初始化合物数(默认 [5]) Kmax 最大化合物数(默认 [15]) maxite_fsmem fsmem 主循环的最大迭代次数(默认 [100]) maxite_fullem 主循环内完整 EM 的最大迭代次数(默认 [100]) maxite_pa
2023-02-06 10:59:08 221KB matlab
1
em算法代码matlab实现期望最大化 Matlab中的期望最大化(EM)算法 此代码实现了Expectation-Maximization(EM)算法,并在简单的2D数据集上对其进行了测试。 期望最大化(EM)算法是一种迭代方法,用于在统计模型中依赖于未观察到的潜在变量的情况下,找到参数的最大似然或最大后验(MAP)估计。 EM迭代在执行期望(E)步骤和创建最大化(M)步骤之间进行交互,该期望步骤用于创建使用参数的当前估计值评估的对数似然性的期望函数,该步骤用于计算使期望对数最大化的参数。在E步上找到的可能性。 然后,这些参数估计值将用于确定下一个E步骤中潜在变量的分布。 例子 在此示例中,我们首先从两个正态分布生成点的数据集,并标记该数据集。 带有正确标签的数据集是我们的真实值。 然后,我们重新组合标签并为新数据集运行EM算法。 EM算法正确地对数据集进行聚类,并且还估计了可用于绘制点的两个正态分布的参数。 结果 我在计算机上得到的结果如下: iteration: 1, error: 1.7244, mu1: [1.2662 1.7053], mu2: [3.6623 3.0902
2023-02-03 11:27:27 76KB 系统开源
1
多窗口的C++MFC宿舍管理程序,非常适合初学者学习,这也是本人花费了一些时间的良心之作,希望大家不要嫌弃。(其中也有很多是查阅资料得来)
2023-01-03 17:25:50 4.37MB C++  MFC Button
1
matlab光照模型代码InfoGAN InfoGAN体系结构 Tensorlayer的实现。 结果 MNIST 操纵第一个连续潜在代码 更改将旋转数字: 操纵第二个连续潜在代码 更改将更改数字的宽度: 操纵离散潜在代码(分类) 更改将更改数字的类型: 随机生成和损失图 G_loss在经过足够的迭代次数后稳步增加,这表明鉴别器越来越强,并且表明训练结束。 西莉亚 操纵离散潜在代码 方位角(姿势): 有无眼镜: 发色: 发量: 灯光: 面Kong 损失图 方位角 随机生成 椅子 回转 跑步 MNIST 开始使用python train.py训练; 这将自动下载数据集。 要查看结果,请执行python test.py并输入已保存模型的编号。 西莉亚 在config.py设置图像文件夹。 数据集的一些链接: 开始训练。 python train.py 面Kong 在config.py设置您的数据文件夹。 BFM 2009的链接: 。 在生成数据之前,应先下载该文件。 使用data_generator的代码生成数据。 在MATLAB中调用gen_data 。 开始使用python train.
2022-12-17 17:53:23 1.28MB 系统开源
1
基于变分贝叶斯期望最大化(VBEM,variational Bayes expectation maximization)算法和Turbo原理,提 出了时变信道条件下MIMO-OFDM系统中的联合符号检测与信道估计算法。设计的软入软出空时检测器在采用 列表球形译码避免穷尽搜索的同时,考虑了信道估计误差方差矩阵的影响;利用空时检测获得的发送信号后验概率 分布估计,推出了新的Kalman前向后向递归信道估计器。仿真结果表明,在时变多径信道条件下,提出的算法 比传统EM算法和面向判决算法更加具有顽健性。
1